Meromorphic continuation and the degree of rational approximations in $\mathbf C^N$
Sbornik. Mathematics, Tome 28 (1976) no. 4, pp. 553-561
Cet article a éte moissonné depuis la source Math-Net.Ru
A connection is established between domains of meromorphy of a function of several complex variables and the degree of approximations by rational functions of special form. Bibliography: 5 titles.
@article{SM_1976_28_4_a7,
author = {E. M. Chirka},
title = {Meromorphic continuation and the degree of rational approximations in~$\mathbf C^N$},
journal = {Sbornik. Mathematics},
pages = {553--561},
year = {1976},
volume = {28},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1976_28_4_a7/}
}
E. M. Chirka. Meromorphic continuation and the degree of rational approximations in $\mathbf C^N$. Sbornik. Mathematics, Tome 28 (1976) no. 4, pp. 553-561. http://geodesic.mathdoc.fr/item/SM_1976_28_4_a7/
[1] Dzh. L. Uolsh, Interpolyatsiya i approksimatsiya ratsionalnymi funktsiyami v kompleksnoi oblasti, IL, Moskva, 1961 | MR
[2] A. A. Gonchar, “Ob odnoi teoreme Saffa”, Matem. sb., 94 (136) (1974), 152–157 | Zbl
[3] E. B. Saff, “Regions of meromorphy determined by the degree of best rational approximation”, Proc. Amer. Math. Soc., 29 (1971), 30–38 | DOI | MR | Zbl
[4] J. Siciak, “On some extremal functions and their applications in the theory of analytic functions of several complex variables”, Trans. Amer. Math. Soc., 105 (1962), 322–357 | DOI | MR | Zbl
[5] B. Ya. Levin, Raspredelenie kornei tselykh funktsii, Gostekhizdat, Moskva, 1956