Asymptotic distribution of eigenvalues for hypoelliptic systems in~$R^n$
Sbornik. Mathematics, Tome 28 (1976) no. 4, pp. 533-552

Voir la notice de l'article provenant de la source Math-Net.Ru

General symmetric hypoelliptic systems of differential operators in $R^n$ with discrete spectrum are considered. Two-sided estimates, as $t\to\infty$, are found for $N(t)$, the number of eigenvalues in the interval $[0,t]$. Under a regularity assumption on the behavior of the spectrum of the Weyl matrix symbol of the system, these estimates reduce to the asymptotics of $N(t)$ with an estimate of the remainder term. In part the results are also new for the scalar case. Bibliography: 9 titles.
@article{SM_1976_28_4_a6,
     author = {V. I. Feigin},
     title = {Asymptotic distribution of eigenvalues for hypoelliptic systems in~$R^n$},
     journal = {Sbornik. Mathematics},
     pages = {533--552},
     publisher = {mathdoc},
     volume = {28},
     number = {4},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1976_28_4_a6/}
}
TY  - JOUR
AU  - V. I. Feigin
TI  - Asymptotic distribution of eigenvalues for hypoelliptic systems in~$R^n$
JO  - Sbornik. Mathematics
PY  - 1976
SP  - 533
EP  - 552
VL  - 28
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1976_28_4_a6/
LA  - en
ID  - SM_1976_28_4_a6
ER  - 
%0 Journal Article
%A V. I. Feigin
%T Asymptotic distribution of eigenvalues for hypoelliptic systems in~$R^n$
%J Sbornik. Mathematics
%D 1976
%P 533-552
%V 28
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1976_28_4_a6/
%G en
%F SM_1976_28_4_a6
V. I. Feigin. Asymptotic distribution of eigenvalues for hypoelliptic systems in~$R^n$. Sbornik. Mathematics, Tome 28 (1976) no. 4, pp. 533-552. http://geodesic.mathdoc.fr/item/SM_1976_28_4_a6/