Asymptotic distribution of eigenvalues for hypoelliptic systems in $R^n$
Sbornik. Mathematics, Tome 28 (1976) no. 4, pp. 533-552 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

General symmetric hypoelliptic systems of differential operators in $R^n$ with discrete spectrum are considered. Two-sided estimates, as $t\to\infty$, are found for $N(t)$, the number of eigenvalues in the interval $[0,t]$. Under a regularity assumption on the behavior of the spectrum of the Weyl matrix symbol of the system, these estimates reduce to the asymptotics of $N(t)$ with an estimate of the remainder term. In part the results are also new for the scalar case. Bibliography: 9 titles.
@article{SM_1976_28_4_a6,
     author = {V. I. Feigin},
     title = {Asymptotic distribution of eigenvalues for hypoelliptic systems in~$R^n$},
     journal = {Sbornik. Mathematics},
     pages = {533--552},
     year = {1976},
     volume = {28},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1976_28_4_a6/}
}
TY  - JOUR
AU  - V. I. Feigin
TI  - Asymptotic distribution of eigenvalues for hypoelliptic systems in $R^n$
JO  - Sbornik. Mathematics
PY  - 1976
SP  - 533
EP  - 552
VL  - 28
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1976_28_4_a6/
LA  - en
ID  - SM_1976_28_4_a6
ER  - 
%0 Journal Article
%A V. I. Feigin
%T Asymptotic distribution of eigenvalues for hypoelliptic systems in $R^n$
%J Sbornik. Mathematics
%D 1976
%P 533-552
%V 28
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1976_28_4_a6/
%G en
%F SM_1976_28_4_a6
V. I. Feigin. Asymptotic distribution of eigenvalues for hypoelliptic systems in $R^n$. Sbornik. Mathematics, Tome 28 (1976) no. 4, pp. 533-552. http://geodesic.mathdoc.fr/item/SM_1976_28_4_a6/

[1] E. Ch. Titchmarsh, Razlozheniya po sobstvennym funktsiyam, svyazannye s differentsialnymi uravneniyami vtorogo poryadka, t. 2, IL, Moskva, 1961

[2] A. G. Kostyuchenko, Doktorskaya dissertatsiya, MGU, Moskva, 1966

[3] M. Sh. Birman, V. V. Borzov, “Ob asimptotike diskretnogo spektra nekotorykh singulyarnykh operatorov”, Problemy matem. fiziki, izd-vo LGU, Leningrad, 1971, 24–37 | MR

[4] G. V. Rozenblyum, “Asimptotika sobstvennykh chisel operatora Shredingera”, Matem. sb., 93 (135) (1974), 347–367

[5] V. N. Tulovskii, M. A. Shubin, “Ob asimptoticheskom raspredelenii sobstvennykh znachenii psevdodifferentsialnykh operatorov v $R^n$”, Matem. sb., 92 (134) (1973), 571–588 | MR | Zbl

[6] V. I. Feigin, “Novye klassy psevdodifferentsialnykh operatorov v $R^n$ i nekotorye prilozheniya”, Trudy Mosk. matem. ob-va, XXXVI (1976)

[7] S. A. Smagin, Kandidatskaya dissertatsiya, MGU, Moskva, 1975

[8] R. S. Ismagilov, “Ob asimptotike spektra differentsialnykh operatorov v prostranstve vektor-funktsii”, Matem. zametki, 9:6 (1971), 667–676 | MR | Zbl

[9] V. I. Feigin, “Dve algebry psevdodifferentsialnykh operatorov v $R^n$ i nekotorye prilozheniya”, Uspekhi matem. nauk, XXXI:2(188) (1976), 233–234 | MR | Zbl