Asymptotic distribution of eigenvalues for hypoelliptic systems in~$R^n$
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 28 (1976) no. 4, pp. 533-552
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			General symmetric hypoelliptic systems of differential operators in $R^n$ with discrete spectrum are considered. Two-sided estimates, as $t\to\infty$, are found for $N(t)$, the number of eigenvalues in the interval $[0,t]$. Under a regularity assumption on the behavior of the spectrum of the Weyl matrix symbol of the system, these estimates reduce to the asymptotics of $N(t)$ with an estimate of the remainder term. In part the results are also new for the scalar case.
Bibliography: 9 titles.
			
            
            
            
          
        
      @article{SM_1976_28_4_a6,
     author = {V. I. Feigin},
     title = {Asymptotic distribution of eigenvalues for hypoelliptic systems in~$R^n$},
     journal = {Sbornik. Mathematics},
     pages = {533--552},
     publisher = {mathdoc},
     volume = {28},
     number = {4},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1976_28_4_a6/}
}
                      
                      
                    V. I. Feigin. Asymptotic distribution of eigenvalues for hypoelliptic systems in~$R^n$. Sbornik. Mathematics, Tome 28 (1976) no. 4, pp. 533-552. http://geodesic.mathdoc.fr/item/SM_1976_28_4_a6/
