On the summability of positive solutions of partial differential equations of arbitrary order in a~neighborhood of a~characteristic manifold
Sbornik. Mathematics, Tome 28 (1976) no. 4, pp. 521-531

Voir la notice de l'article provenant de la source Math-Net.Ru

A nonnegative solution of the equation $\sum_{|\alpha|\leqslant m}a_\alpha(x)D^\alpha u=0$ is considered in an arbitrary domain $G$ with smooth boundary $\Gamma$. The surface $\Gamma$ can contain a characteristic manifold $\Gamma_0$. Conditions on $\Gamma_0$ are obtained ensuring that $\int_Gu\,dx$ is always finite. These conditions turn out to be best possible. Bibliography: 4 titles.
@article{SM_1976_28_4_a5,
     author = {V. A. Kondrat'ev and S. D. \`Eidel'man},
     title = {On the summability of positive solutions of partial differential equations of arbitrary order in a~neighborhood of a~characteristic manifold},
     journal = {Sbornik. Mathematics},
     pages = {521--531},
     publisher = {mathdoc},
     volume = {28},
     number = {4},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1976_28_4_a5/}
}
TY  - JOUR
AU  - V. A. Kondrat'ev
AU  - S. D. Èidel'man
TI  - On the summability of positive solutions of partial differential equations of arbitrary order in a~neighborhood of a~characteristic manifold
JO  - Sbornik. Mathematics
PY  - 1976
SP  - 521
EP  - 531
VL  - 28
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1976_28_4_a5/
LA  - en
ID  - SM_1976_28_4_a5
ER  - 
%0 Journal Article
%A V. A. Kondrat'ev
%A S. D. Èidel'man
%T On the summability of positive solutions of partial differential equations of arbitrary order in a~neighborhood of a~characteristic manifold
%J Sbornik. Mathematics
%D 1976
%P 521-531
%V 28
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1976_28_4_a5/
%G en
%F SM_1976_28_4_a5
V. A. Kondrat'ev; S. D. Èidel'man. On the summability of positive solutions of partial differential equations of arbitrary order in a~neighborhood of a~characteristic manifold. Sbornik. Mathematics, Tome 28 (1976) no. 4, pp. 521-531. http://geodesic.mathdoc.fr/item/SM_1976_28_4_a5/