On functions of several complex variables that are separately meromorphic
Sbornik. Mathematics, Tome 28 (1976) no. 4, pp. 481-489 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper it is proved that a function of $n$ complex variables that is meromorphic in each variable separately on a special set $X$ is globally meromorphic in the neighborhood of $X$. This result is an analog of a theorem of J. Siciak on separate holomorphicity. Bibliography: 8 titles.
@article{SM_1976_28_4_a2,
     author = {M. V. Kazaryan},
     title = {On functions of several complex variables that are separately meromorphic},
     journal = {Sbornik. Mathematics},
     pages = {481--489},
     year = {1976},
     volume = {28},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1976_28_4_a2/}
}
TY  - JOUR
AU  - M. V. Kazaryan
TI  - On functions of several complex variables that are separately meromorphic
JO  - Sbornik. Mathematics
PY  - 1976
SP  - 481
EP  - 489
VL  - 28
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1976_28_4_a2/
LA  - en
ID  - SM_1976_28_4_a2
ER  - 
%0 Journal Article
%A M. V. Kazaryan
%T On functions of several complex variables that are separately meromorphic
%J Sbornik. Mathematics
%D 1976
%P 481-489
%V 28
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1976_28_4_a2/
%G en
%F SM_1976_28_4_a2
M. V. Kazaryan. On functions of several complex variables that are separately meromorphic. Sbornik. Mathematics, Tome 28 (1976) no. 4, pp. 481-489. http://geodesic.mathdoc.fr/item/SM_1976_28_4_a2/

[1] J. Siciak, “Separately analitic functions and envelopes of holomorphy of some lower dimensional subsets of $\mathbf{C}^n$”, Ann. Pol. Math., 22:2 (1969), 145–170 | MR

[2] W. Rothstein, “Ein neuer Beweis des Hartogsschen Hauptsatzes und seine Ausdehnung auf meromorphe Functionen”, Math. Z., 53 (1950), 84–95 | DOI | MR | Zbl

[3] E. Sakai, “A note on meromorphic functions in several complex variables”, Mem. Fac. Sci., Kyusyu Univ., ser. A, 11:1 (1957), 75–80 | MR | Zbl

[4] S. Bokhner, U. T. Martin, Funktsii mnogikh kompleksnykh peremennykh, IL, Moskva, 1951

[5] H. Okuda, E. Sakai, “On the continuation theorem of Levi and the radius of meromorphy”, Mem. Fac. Sci., Kyusyu Univ., ser. A, 11:1 (1957), 65–73 | MR | Zbl

[6] I. Kajiwara, “On weak Poincaré problem”, Mem. Fac. Sci., Kyusyu Univ., ser. A, 22 (1968), 9–17 | MR | Zbl

[7] M. Brelo, Osnovy klassicheskoi teorii potentsiala, izd-vo «Mir», Moskva, 1964 | MR

[8] N. S. Landkof, Osnovy sovremennoi teorii potentsiala, izd-vo «Nauka», Moskva, 1966 | MR