A boundary value problem for the elliptic equation of second order in a domain with a narrow slit. 1. The two-dimensional case
Sbornik. Mathematics, Tome 28 (1976) no. 4, pp. 459-480 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An elliptic equation is considered in a domain $D_\varepsilon$ that is obtained from a two-dimensional domain $D$ by removing a neighborhood of a segment. It is assumed that this neighborhood contracts to the segment as $\varepsilon\to0$. An asymptotic expansion of the solution of the first boundary value problem in $D_\varepsilon$ is constructed and justified. Bibliography: 5 titles.
@article{SM_1976_28_4_a1,
     author = {A. M. Il'in},
     title = {A~boundary value problem for the elliptic equation of second order in a~domain with a~narrow slit. {1.~The} two-dimensional case},
     journal = {Sbornik. Mathematics},
     pages = {459--480},
     year = {1976},
     volume = {28},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1976_28_4_a1/}
}
TY  - JOUR
AU  - A. M. Il'in
TI  - A boundary value problem for the elliptic equation of second order in a domain with a narrow slit. 1. The two-dimensional case
JO  - Sbornik. Mathematics
PY  - 1976
SP  - 459
EP  - 480
VL  - 28
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1976_28_4_a1/
LA  - en
ID  - SM_1976_28_4_a1
ER  - 
%0 Journal Article
%A A. M. Il'in
%T A boundary value problem for the elliptic equation of second order in a domain with a narrow slit. 1. The two-dimensional case
%J Sbornik. Mathematics
%D 1976
%P 459-480
%V 28
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1976_28_4_a1/
%G en
%F SM_1976_28_4_a1
A. M. Il'in. A boundary value problem for the elliptic equation of second order in a domain with a narrow slit. 1. The two-dimensional case. Sbornik. Mathematics, Tome 28 (1976) no. 4, pp. 459-480. http://geodesic.mathdoc.fr/item/SM_1976_28_4_a1/

[1] M. Van-Daik, Metody vozmuschenii v mekhanike zhidkosti, izd-vo «Mir», Moskva, 1967

[2] V. A. Kondratev, “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Trudy Mosk. matem. ob-va, XVI (1967), 209–292

[3] A. M. Ilin, Yu. P. Gorkov, E. F. Lelikova, “Asimptotika resheniya ellipticheskogo uravneniya s malym parametrom pri starshikh proizvodnykh v okrestnosti osoboi kharakteristiki predelnogo uravneniya”, Trudy seminara im. I. G. Petrovskogo, 1975, no. 1, 75–133

[4] A. M. Ilin, E. F. Lelikova, “Metod sraschivaniya asimptoticheskikh razlozhenii dlya uravneniya $\varepsilon\Delta u+a(x,y)u_y=f(x,y)$ v pryamougolnike”, Matem. sb., 96(138) (1975), 568–583 | MR

[5] V. Yu. Novokshenov, “Postroenie asimptotiki resheniya odnogo ellipticheskogo uravneniya v polose”, Voprosy teorii i matematicheskie metody resheniya zadach, Bashk. filial AN SSSR, Ufa, 1975