Euler products for congruence subgroups of the Siegel group of genus $2$
Sbornik. Mathematics, Tome 28 (1976) no. 4, pp. 431-458 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper the construction is begun of a theory of Dirichlet series with Euler expansion which correspond to analytic automorphic forms for congruence subgroups of the integral symplectic group of genus $2$. Namely, for an arbitrary positive integer $q$ a connection is revealed between the eigenvalues $\lambda_F(m)$ of an eigenfunction $F\in\mathfrak M_k\bigl(\Gamma_2(q)\bigr)$ of all the Hecke operators $T_k(m)$ ($(m,q)=1$), where $\Gamma_2(q)$ is the principal congruence subgroup of degree $q$ of the group $\Gamma_2=\operatorname{Sp}_2(\mathbf Z)$, and its Fourier coefficients. This connection can be written in the language of Dirichlet series in the form of identities; here an infinite sequence of identities arises, indexed by classes of positive definite integral primitive binary quadratic forms equivalent modulo the principal congruence subgroup of degree $q$ of $\operatorname{SL}_2(\mathbf Z)$. Bibliography: 15 titles.
@article{SM_1976_28_4_a0,
     author = {S. A. Evdokimov},
     title = {Euler products for congruence subgroups of the {Siegel} group of genus~$2$},
     journal = {Sbornik. Mathematics},
     pages = {431--458},
     year = {1976},
     volume = {28},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1976_28_4_a0/}
}
TY  - JOUR
AU  - S. A. Evdokimov
TI  - Euler products for congruence subgroups of the Siegel group of genus $2$
JO  - Sbornik. Mathematics
PY  - 1976
SP  - 431
EP  - 458
VL  - 28
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1976_28_4_a0/
LA  - en
ID  - SM_1976_28_4_a0
ER  - 
%0 Journal Article
%A S. A. Evdokimov
%T Euler products for congruence subgroups of the Siegel group of genus $2$
%J Sbornik. Mathematics
%D 1976
%P 431-458
%V 28
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1976_28_4_a0/
%G en
%F SM_1976_28_4_a0
S. A. Evdokimov. Euler products for congruence subgroups of the Siegel group of genus $2$. Sbornik. Mathematics, Tome 28 (1976) no. 4, pp. 431-458. http://geodesic.mathdoc.fr/item/SM_1976_28_4_a0/

[1] A. N. Andrianov, “Ryady Dirikhle s eilerovskim proizvedeniem v teorii zigelevykh modulyarnykh form roda 2”, Trudy Matem. in-ta imeni V. A. Steklova, CXII (1971), 73–94 | MR

[2] A. N. Andrianov, “Eilerovy proizvedeniya, otvechayuschie modulyarnym formam Zigelya roda 2”, Uspekhi matem. nauk, XXIX:3 (117) (1974), 43–110 | MR

[3] A. N. Andrianov, G. N. Maloletkin, “Povedenie teta-ryadov roda $n$ pri modulyarnykh podstanovkakh”, Izv. AN SSSR, seriya matem., 39 (1975), 243–258 | MR | Zbl

[4] E. Hecke, “Über Modulfunktionen und die Dirichletschen Reihen mit Eulerscher Produktentwicklung. I; II”, Math. Ann., 114 (1937), 1–28 ; 316–351 | DOI | MR | Zbl | MR | Zbl

[5] A. Ogg, Modular forms and Dirichlet series, Benjamin, New York, 1969 | MR | Zbl

[6] Z. I. Borevich, I. R. Shafarevich, Teoriya chisel, izd-vo «Nauka», Moskva, 1972 | MR

[7] G. Shimura, “On modular correspondences for $\mathrm{Sp}(n, \mathbf{Z})$ and their congruence relations”, Proc. Nat. Acad. Sci. USA, 49:6 (1963), 824–828 | DOI | MR | Zbl

[8] G. Shimura, Vvedenie v arifmeticheskuyu teoriyu avtomorfnykh funktsii, izd-vo «Mir», Moskva, 1973 | MR

[9] A. N. Andrianov, “Teoremy ratsionalnosti dlya ryadov Gekke i dzeta-funktsii grupp $GL_n$ i $Sp_n$ nad lokalnymi polyami”, Izv. AN SSSR, seriya matem., 33 (1969), 466–505 | MR | Zbl

[10] A. N. Andrianov, “Sfericheskie funktsii dlya $GL_n$ nad lokalnymi polyami i summirovanie ryadov Gekke”, Matem. sb., 83 (125) (1970), 429–451 | MR | Zbl

[11] C. L. Siegel, “Einführung in die Theorie der Modulfunktionen $n$-ten Grades”, Math. Ann., 116 (1939), 617–657 | DOI | MR | Zbl

[12] “Fonctions Automorphes”, Seminaire H. Cartan, 10-e annee, 1957–1958, Paris, 1958

[13] S. Raghavan, “Modular forms of degree $n$ and representations by quadratic forms”, Ann. Math., 70:3 (1959), 446–477 | DOI | MR

[14] H. Maass, Siegel's modular forms and Dirichlet series, Lecture notes in Math., 216, Springer-Verlag, Berlin, 1971 | MR | Zbl

[15] Algebraicheskaya teoriya chisel, eds. Dzh. Kassels, A. Frelikh, izd-vo «Mir», Moskva, 1969 | MR