Quasianalyticity of the sum of a lacunary series
Sbornik. Mathematics, Tome 28 (1976) no. 3, pp. 389-419 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present a simple method, which as far as we know is different from all previous methods, for proving a theorem of Mandelbrojt (Quasianafytic classes of functions, ONTI, Leningrad–Moscow, 1937, p. 84) and its generalizations. It is shown that this method leads to very precise theorems for lacunary series. Bibliography: 5 titles.
@article{SM_1976_28_3_a8,
     author = {A. S. Belov},
     title = {Quasianalyticity of the sum of a~lacunary series},
     journal = {Sbornik. Mathematics},
     pages = {389--419},
     year = {1976},
     volume = {28},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1976_28_3_a8/}
}
TY  - JOUR
AU  - A. S. Belov
TI  - Quasianalyticity of the sum of a lacunary series
JO  - Sbornik. Mathematics
PY  - 1976
SP  - 389
EP  - 419
VL  - 28
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1976_28_3_a8/
LA  - en
ID  - SM_1976_28_3_a8
ER  - 
%0 Journal Article
%A A. S. Belov
%T Quasianalyticity of the sum of a lacunary series
%J Sbornik. Mathematics
%D 1976
%P 389-419
%V 28
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1976_28_3_a8/
%G en
%F SM_1976_28_3_a8
A. S. Belov. Quasianalyticity of the sum of a lacunary series. Sbornik. Mathematics, Tome 28 (1976) no. 3, pp. 389-419. http://geodesic.mathdoc.fr/item/SM_1976_28_3_a8/

[1] S. Mandelbroit, Kvazianaliticheskie klassy funktsii, ONTI, Moskva, 1937

[2] S. Mandelbrojt, N. Wiener, “Séries de Fourier lacunaires. Théorèmes inverses”, C. r. Acad. scient. Paris, 203 (1936), 34–36 ; 233–234 | Zbl | Zbl

[3] B. Ya. Levin, M. Livshits, “O kvazianaliticheskikh klassakh funktsii, predstavlennykh ryadami Fure”, Matem. sb., 9 (51) (1941), 693–709

[4] B. Ya. Levin, Raspredelenie kornei tselykh funktsii, Gostekhizdat, Moskva, 1956

[5] A. Zigmund, Trigonometricheskie ryady, t. I, izd-vo «Mir», Moskva, 1965 | MR