On embedding in classes of continuous functions of several variables
Sbornik. Mathematics, Tome 28 (1976) no. 3, pp. 377-388

Voir la notice de l'article provenant de la source Math-Net.Ru

P. L. Ul'yanov (RZhMat., 1968, 5B120) has found necessary and sufficient conditions for each function of the class $H_p^\omega$ (where $1$, and $\omega$ is a modulus of continuity) to be equivalent to a continuous function on $[0,1]$ or to a function of the class $\operatorname{Lip}\alpha$. Ul'yanov's research for functions of one variable was continued by V. A. Andrienko (RZhMat., 1969, 2B110). In the present paper, analogous questions for functions of several variables are considered. Bibliography: 6 titles.
@article{SM_1976_28_3_a7,
     author = {V. I. Kolyada},
     title = {On embedding in classes of continuous functions of several variables},
     journal = {Sbornik. Mathematics},
     pages = {377--388},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1976_28_3_a7/}
}
TY  - JOUR
AU  - V. I. Kolyada
TI  - On embedding in classes of continuous functions of several variables
JO  - Sbornik. Mathematics
PY  - 1976
SP  - 377
EP  - 388
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1976_28_3_a7/
LA  - en
ID  - SM_1976_28_3_a7
ER  - 
%0 Journal Article
%A V. I. Kolyada
%T On embedding in classes of continuous functions of several variables
%J Sbornik. Mathematics
%D 1976
%P 377-388
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1976_28_3_a7/
%G en
%F SM_1976_28_3_a7
V. I. Kolyada. On embedding in classes of continuous functions of several variables. Sbornik. Mathematics, Tome 28 (1976) no. 3, pp. 377-388. http://geodesic.mathdoc.fr/item/SM_1976_28_3_a7/