@article{SM_1976_28_3_a4,
author = {B. T. Rumov},
title = {Existence of resolvable block designs},
journal = {Sbornik. Mathematics},
pages = {325--337},
year = {1976},
volume = {28},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1976_28_3_a4/}
}
B. T. Rumov. Existence of resolvable block designs. Sbornik. Mathematics, Tome 28 (1976) no. 3, pp. 325-337. http://geodesic.mathdoc.fr/item/SM_1976_28_3_a4/
[1] M. Kholl, Kombinatorika, izd-vo «Mir», Moskva, 1970 | MR
[2] H. Hanani, “The existence and construction of balanced incomplete block designs”, Ann. Math. Stat., 32:2 (1961), 361–386 | DOI | MR | Zbl
[3] H. Hanani, “On balanced incomplete block designs with block having five elements”, J. Comb. Theory, 12 (1972), 184–201 | DOI | MR | Zbl
[4] D. K. Ray-Chaudhuri, R. M. Wilson, “Solution of Kirkmanś schoolgirl problem”, Proc. Symp. Pure Math. Combinatorics, 19, Amer. Math. Soc., 1971, 187–203 | MR
[5] H. Hanani, D. K. Ray-Chaudhuri, R. M. Wilson, “On resolvable designs”, Discrete Math., 3 (1972), 343–357 | DOI | MR | Zbl
[6] D. K. Ray-Chaudhuri, R. M. Wilson, “The existence of resolvable block designs”, A Survey of Combin. Theory, Amsterdam, 1973, 361–375 | MR | Zbl
[7] C. R. Rao, “A study of BIB designs with replications 11 to 15”, Sankhyã, 23 (1961), 117–127 | MR | Zbl
[8] R. Lorimer, “A class of block designs having the same parameters as the design of points and linies in a projective 3-space”, Lect. Notes Math., 403, Springer-Verlag, Berlin, 1974, 73–78 | MR
[9] H. Hanani, “On resolvable balanced incomplete block designs”, J. Comb. Theory, 17 (1974), 275–289 | DOI | MR | Zbl
[10] B. T. Rumov, “Nekotorye teoremy vlozheniya dlya blok-skhem, uravnoveshennykh otnositelno par”, Matem. zametki, 16:1 (1974), 173–184 | MR | Zbl
[11] S. Kageyama, “A survey of resolvable solutions of balanced incomplete block designs”, Int. Stat. Rev., 40:3 (1972), 269–273 | Zbl
[12] R. C. Bose, T. Shimamoto, “Classification and analysis of partally balanced incomplete block designs with two associate classes”, J. Amer. Stat. Assn., 47 (1952), 151–184 | DOI | MR | Zbl
[13] R. C. Bose, S. S. Shrikhande, K. N. Bhattacharya, “On the construction of group divisible incomplete block designs”, Ann. Math. Stat., 24:2 (1953), 167–195 | DOI | MR | Zbl
[14] B. T. Rumov, “O rekursivnom postroenii raznostnykh semeistv v netsiklicheskikh gruppakh”, Matem. sb., 98 (140) (1975), 280–291 | MR | Zbl
[15] R. M. Wilson, “Cyclotomy and difference families in elementary abelian groups”, J. Number Theory, 4 (1972), 17–47 | DOI | MR | Zbl
[16] B. T. Rumov, “O postroenii blok-skhem iz elementov koltsa vychetov po sostavnomu modulyu”, Matem. zametki, 10:6 (1971), 649–658 | MR | Zbl
[17] B. T. Rumov, “Ob odnom metode postroeniya obobschennykh raznostnykh mnozhestv”, Matem. zametki, 15:4 (1974), 551–560 | MR | Zbl
[18] H. Hanani, “Balanced incomplete block designs and related designs”, Discrete Math., 11:3–4 (1975), 255–369 | DOI | MR | Zbl
[19] R. C. Bose, “On the application of finite proective geometry for deriving a certain series of balanced Kirkman arrangements”, Calcutta Math. Soc., Golden Jubilee, 1959, 341–354 | MR | Zbl
[20] R. C. Bose, S. S. Shrikhande, “On the construction of sets of pairwise orthogonal latin squares and the falsity of a conjecture of Euler”, Mimeo Series Institute of Statistics, no. 222, University of North Carolina, Chapel Hill, 1959
[21] R. C. Bose, “On resolvable of balanced incomplete block designs”, Sankhyã, 8 (1947), 249–256 | MR | Zbl
[22] B. T. Rumov, “O postroenii odnoi beskonechnoi serii sistem troek Kirkmana”, Voprosy kibernetiki, Trudy II Vsesoyuznogo seminara po kombinatornoi matematike, 1, 1975, 77–88
[23] R. C. Mullin, “Resolvable designs and geometroids”, Utilitas Math., 5 (1974), 137–149 | MR | Zbl
[24] G. Ferrero, “Su una classe di nuovi disegni”, Istituto Lombardo (Rend. Sc.), A 106 (1972), 419–430 | MR | Zbl