Existence of resolvable block designs
Sbornik. Mathematics, Tome 28 (1976) no. 3, pp. 325-337 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A recursive method of constructing resolvable BIB designs (RBIB designs) using the existence of a special type of difference families is set forth. The existence of RBIB designs $(v,k,\lambda)$ whose parameters $k$ and $\lambda$ are connected by one of the relationships a) $\lambda=k-1$, b) $\lambda=(k-1)/2$, c) $\lambda=(k-1)/4$ or d) $\lambda=(k-1)/8$, as well as group-divisible resolvable designs in the group of RGD designs with parameters $(v,k,m,\lambda_1,\lambda_2)$, where $m=v/k$, $\lambda_1=\lambda$ and $\lambda_2=s\geq1$, is proved. Moreover, the existence of a RGD design ($vw,k,w,\lambda_1=0,\lambda_2=\lambda$) for given $w$ is derived from the existence of the RBIB design $(v,k,\lambda)$, and the existence of two series of $(v,k,\lambda)$-difference families with $\lambda=k/4$ and $\lambda=k/8$ is proved. Bibliography: 24 titles.
@article{SM_1976_28_3_a4,
     author = {B. T. Rumov},
     title = {Existence of resolvable block designs},
     journal = {Sbornik. Mathematics},
     pages = {325--337},
     year = {1976},
     volume = {28},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1976_28_3_a4/}
}
TY  - JOUR
AU  - B. T. Rumov
TI  - Existence of resolvable block designs
JO  - Sbornik. Mathematics
PY  - 1976
SP  - 325
EP  - 337
VL  - 28
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1976_28_3_a4/
LA  - en
ID  - SM_1976_28_3_a4
ER  - 
%0 Journal Article
%A B. T. Rumov
%T Existence of resolvable block designs
%J Sbornik. Mathematics
%D 1976
%P 325-337
%V 28
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1976_28_3_a4/
%G en
%F SM_1976_28_3_a4
B. T. Rumov. Existence of resolvable block designs. Sbornik. Mathematics, Tome 28 (1976) no. 3, pp. 325-337. http://geodesic.mathdoc.fr/item/SM_1976_28_3_a4/

[1] M. Kholl, Kombinatorika, izd-vo «Mir», Moskva, 1970 | MR

[2] H. Hanani, “The existence and construction of balanced incomplete block designs”, Ann. Math. Stat., 32:2 (1961), 361–386 | DOI | MR | Zbl

[3] H. Hanani, “On balanced incomplete block designs with block having five elements”, J. Comb. Theory, 12 (1972), 184–201 | DOI | MR | Zbl

[4] D. K. Ray-Chaudhuri, R. M. Wilson, “Solution of Kirkmanś schoolgirl problem”, Proc. Symp. Pure Math. Combinatorics, 19, Amer. Math. Soc., 1971, 187–203 | MR

[5] H. Hanani, D. K. Ray-Chaudhuri, R. M. Wilson, “On resolvable designs”, Discrete Math., 3 (1972), 343–357 | DOI | MR | Zbl

[6] D. K. Ray-Chaudhuri, R. M. Wilson, “The existence of resolvable block designs”, A Survey of Combin. Theory, Amsterdam, 1973, 361–375 | MR | Zbl

[7] C. R. Rao, “A study of BIB designs with replications 11 to 15”, Sankhyã, 23 (1961), 117–127 | MR | Zbl

[8] R. Lorimer, “A class of block designs having the same parameters as the design of points and linies in a projective 3-space”, Lect. Notes Math., 403, Springer-Verlag, Berlin, 1974, 73–78 | MR

[9] H. Hanani, “On resolvable balanced incomplete block designs”, J. Comb. Theory, 17 (1974), 275–289 | DOI | MR | Zbl

[10] B. T. Rumov, “Nekotorye teoremy vlozheniya dlya blok-skhem, uravnoveshennykh otnositelno par”, Matem. zametki, 16:1 (1974), 173–184 | MR | Zbl

[11] S. Kageyama, “A survey of resolvable solutions of balanced incomplete block designs”, Int. Stat. Rev., 40:3 (1972), 269–273 | Zbl

[12] R. C. Bose, T. Shimamoto, “Classification and analysis of partally balanced incomplete block designs with two associate classes”, J. Amer. Stat. Assn., 47 (1952), 151–184 | DOI | MR | Zbl

[13] R. C. Bose, S. S. Shrikhande, K. N. Bhattacharya, “On the construction of group divisible incomplete block designs”, Ann. Math. Stat., 24:2 (1953), 167–195 | DOI | MR | Zbl

[14] B. T. Rumov, “O rekursivnom postroenii raznostnykh semeistv v netsiklicheskikh gruppakh”, Matem. sb., 98 (140) (1975), 280–291 | MR | Zbl

[15] R. M. Wilson, “Cyclotomy and difference families in elementary abelian groups”, J. Number Theory, 4 (1972), 17–47 | DOI | MR | Zbl

[16] B. T. Rumov, “O postroenii blok-skhem iz elementov koltsa vychetov po sostavnomu modulyu”, Matem. zametki, 10:6 (1971), 649–658 | MR | Zbl

[17] B. T. Rumov, “Ob odnom metode postroeniya obobschennykh raznostnykh mnozhestv”, Matem. zametki, 15:4 (1974), 551–560 | MR | Zbl

[18] H. Hanani, “Balanced incomplete block designs and related designs”, Discrete Math., 11:3–4 (1975), 255–369 | DOI | MR | Zbl

[19] R. C. Bose, “On the application of finite proective geometry for deriving a certain series of balanced Kirkman arrangements”, Calcutta Math. Soc., Golden Jubilee, 1959, 341–354 | MR | Zbl

[20] R. C. Bose, S. S. Shrikhande, “On the construction of sets of pairwise orthogonal latin squares and the falsity of a conjecture of Euler”, Mimeo Series Institute of Statistics, no. 222, University of North Carolina, Chapel Hill, 1959

[21] R. C. Bose, “On resolvable of balanced incomplete block designs”, Sankhyã, 8 (1947), 249–256 | MR | Zbl

[22] B. T. Rumov, “O postroenii odnoi beskonechnoi serii sistem troek Kirkmana”, Voprosy kibernetiki, Trudy II Vsesoyuznogo seminara po kombinatornoi matematike, 1, 1975, 77–88

[23] R. C. Mullin, “Resolvable designs and geometroids”, Utilitas Math., 5 (1974), 137–149 | MR | Zbl

[24] G. Ferrero, “Su una classe di nuovi disegni”, Istituto Lombardo (Rend. Sc.), A 106 (1972), 419–430 | MR | Zbl