Holomorphic functions of several complex variables with nonnegative real part. Traces of holomorphic and pluriharmonic functions on the Shilov boundary
Sbornik. Mathematics, Tome 28 (1976) no. 3, pp. 301-313
Voir la notice de l'article provenant de la source Math-Net.Ru
For a certain class of domains, conditions are given which a continuous function $\varphi$ on the Shilov boundary $S$ of a domain $D$ must satisfy in order that there exist a holomorphic (pluriharmonic) function $f$ in $D$, continuous on $\overline D$ and such that $f|_S=\varphi$.
Bibliography: 24 titles.
@article{SM_1976_28_3_a2,
author = {L. A. Aizenberg and Sh. A. Dautov},
title = {Holomorphic functions of several complex variables with nonnegative real part. {Traces} of holomorphic and pluriharmonic functions on the {Shilov} boundary},
journal = {Sbornik. Mathematics},
pages = {301--313},
publisher = {mathdoc},
volume = {28},
number = {3},
year = {1976},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1976_28_3_a2/}
}
TY - JOUR AU - L. A. Aizenberg AU - Sh. A. Dautov TI - Holomorphic functions of several complex variables with nonnegative real part. Traces of holomorphic and pluriharmonic functions on the Shilov boundary JO - Sbornik. Mathematics PY - 1976 SP - 301 EP - 313 VL - 28 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1976_28_3_a2/ LA - en ID - SM_1976_28_3_a2 ER -
%0 Journal Article %A L. A. Aizenberg %A Sh. A. Dautov %T Holomorphic functions of several complex variables with nonnegative real part. Traces of holomorphic and pluriharmonic functions on the Shilov boundary %J Sbornik. Mathematics %D 1976 %P 301-313 %V 28 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1976_28_3_a2/ %G en %F SM_1976_28_3_a2
L. A. Aizenberg; Sh. A. Dautov. Holomorphic functions of several complex variables with nonnegative real part. Traces of holomorphic and pluriharmonic functions on the Shilov boundary. Sbornik. Mathematics, Tome 28 (1976) no. 3, pp. 301-313. http://geodesic.mathdoc.fr/item/SM_1976_28_3_a2/