Holomorphic functions of several complex variables with nonnegative real part. Traces of holomorphic and pluriharmonic functions on the Shilov boundary
Sbornik. Mathematics, Tome 28 (1976) no. 3, pp. 301-313

Voir la notice de l'article provenant de la source Math-Net.Ru

For a certain class of domains, conditions are given which a continuous function $\varphi$ on the Shilov boundary $S$ of a domain $D$ must satisfy in order that there exist a holomorphic (pluriharmonic) function $f$ in $D$, continuous on $\overline D$ and such that $f|_S=\varphi$. Bibliography: 24 titles.
@article{SM_1976_28_3_a2,
     author = {L. A. Aizenberg and Sh. A. Dautov},
     title = {Holomorphic functions of several complex variables with nonnegative real part. {Traces} of holomorphic and pluriharmonic functions on the {Shilov} boundary},
     journal = {Sbornik. Mathematics},
     pages = {301--313},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1976_28_3_a2/}
}
TY  - JOUR
AU  - L. A. Aizenberg
AU  - Sh. A. Dautov
TI  - Holomorphic functions of several complex variables with nonnegative real part. Traces of holomorphic and pluriharmonic functions on the Shilov boundary
JO  - Sbornik. Mathematics
PY  - 1976
SP  - 301
EP  - 313
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1976_28_3_a2/
LA  - en
ID  - SM_1976_28_3_a2
ER  - 
%0 Journal Article
%A L. A. Aizenberg
%A Sh. A. Dautov
%T Holomorphic functions of several complex variables with nonnegative real part. Traces of holomorphic and pluriharmonic functions on the Shilov boundary
%J Sbornik. Mathematics
%D 1976
%P 301-313
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1976_28_3_a2/
%G en
%F SM_1976_28_3_a2
L. A. Aizenberg; Sh. A. Dautov. Holomorphic functions of several complex variables with nonnegative real part. Traces of holomorphic and pluriharmonic functions on the Shilov boundary. Sbornik. Mathematics, Tome 28 (1976) no. 3, pp. 301-313. http://geodesic.mathdoc.fr/item/SM_1976_28_3_a2/