Holomorphic functions of several complex variables with nonnegative real part. Traces of holomorphic and pluriharmonic functions on the Shilov boundary
Sbornik. Mathematics, Tome 28 (1976) no. 3, pp. 301-313 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a certain class of domains, conditions are given which a continuous function $\varphi$ on the Shilov boundary $S$ of a domain $D$ must satisfy in order that there exist a holomorphic (pluriharmonic) function $f$ in $D$, continuous on $\overline D$ and such that $f|_S=\varphi$. Bibliography: 24 titles.
@article{SM_1976_28_3_a2,
     author = {L. A. Aizenberg and Sh. A. Dautov},
     title = {Holomorphic functions of several complex variables with nonnegative real part. {Traces} of holomorphic and pluriharmonic functions on the {Shilov} boundary},
     journal = {Sbornik. Mathematics},
     pages = {301--313},
     year = {1976},
     volume = {28},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1976_28_3_a2/}
}
TY  - JOUR
AU  - L. A. Aizenberg
AU  - Sh. A. Dautov
TI  - Holomorphic functions of several complex variables with nonnegative real part. Traces of holomorphic and pluriharmonic functions on the Shilov boundary
JO  - Sbornik. Mathematics
PY  - 1976
SP  - 301
EP  - 313
VL  - 28
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1976_28_3_a2/
LA  - en
ID  - SM_1976_28_3_a2
ER  - 
%0 Journal Article
%A L. A. Aizenberg
%A Sh. A. Dautov
%T Holomorphic functions of several complex variables with nonnegative real part. Traces of holomorphic and pluriharmonic functions on the Shilov boundary
%J Sbornik. Mathematics
%D 1976
%P 301-313
%V 28
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1976_28_3_a2/
%G en
%F SM_1976_28_3_a2
L. A. Aizenberg; Sh. A. Dautov. Holomorphic functions of several complex variables with nonnegative real part. Traces of holomorphic and pluriharmonic functions on the Shilov boundary. Sbornik. Mathematics, Tome 28 (1976) no. 3, pp. 301-313. http://geodesic.mathdoc.fr/item/SM_1976_28_3_a2/

[1] R. Nevanlinna, Odnoznachnye analiticheskie funktsii, Gostekhizdat, Moskva–Leningrad, 1941

[2] V. S. Vladimirov, “Golomorfnye funktsii s polozhitelnoi mnimoi chastyu v trube buduschego, I”, Matem. sb., 93 (135) (1974), 3–17 | Zbl

[3] V. S. Vladimirov, “Golomorfnye funktsii s polozhitelnoi mnimoi chastyu v trube buduschego, II”, Matem. sb., 94 (136) (1974), 499–515 | Zbl

[4] A. Koranyi, J. Pukansky, “Holomorphie functions with positive real part on polycylinder”, Trans. Amer. Math. Soc., 108:3 (1963), 449–456 | DOI | MR | Zbl

[5] V. S. Vladimirov, Yu. N. Drozhzhinov, “Golomorfnye funktsii v polikruge s neotritsatelnoi mnimoi chastyu”, Matem. zametki, 15:1 (1974), 55–61 | MR | Zbl

[6] V. S. Vladimirov, “Golomorfnye funktsii s neotritsatelnoi mnimoi chastyu v trubchatoi oblasti nad konusom”, Matem. sb., 79 (121) (1969), 128–152 | Zbl

[7] V. S. Vladimirov, Metody teorii funktsii mnogikh kompleksnykh peremennykh, izd-vo «Nauka», Moskva, 1964 | MR

[8] L. Bunqart, “Boundary kernel functions for domains on complex manifolds”, Pacific J. Math., 14:4 (1964), 1151–1164 | MR

[9] Khua Lo-ken, Garmonicheskii analiz funktsii mnogikh kompleksnykh peremennykh v klassicheskikh oblastyakh, IL, Moskva, 1959

[10] L. A. Aizenberg, “Integralnye predstavleniya funktsii, golomorfnykh v $n$-krugovykh oblastyakh («Rasprostranenie» yader Sege)”, Matem. sb., 65(107) (1964), 104–143 | MR | Zbl

[11] L. A. Aizenberg, “Rasprostranenie integralnykh predstavlenii s yadrami i kvaziyadrami Sege dlya $n$-krugovykh oblastei”, Nekotorye svoistva golomorfnykh funktsii mnogikh kompleksnykh peremennykh, IFSO, Krasnoyarsk, 1973, 3–34 | MR

[12] B. S. Zinovev, “O vosproizvodyaschikh yadrakh dlya kratnokrugovykh oblastei golomorfnosti”, Sib. matem. zh., 15:1 (1974), 35–48 | MR

[13] M. A. Borodin, “Nekotorye integralnye predstavleniya funktsii, golomorfnykh v dvoyakokrugovykh oblastyakh”, Sib. matem. zh., 10:2 (1969), 287–297 | MR

[14] B. S. Zinovev, “O yadrakh Bergmana, Puassona i Shvartsa dlya kratno-krugovykh oblastei golomorfnosti”, Tezisy dokl. Vsesoyuznoi konferentsii po TFKP, Kharkov, 1971, 83–85

[15] E. M. Stein, Boundary behavior of holomorphic function of several complex variables, Prinseton universiti press, 1972 | MR | Zbl

[16] L. A. Aizenberg, Sh. A. Dautov, Differentsialnye formy, ortogonalnye golomorfnym formam ili funktsiyam, i ikh svoistva, izd-vo «Nauka», Novosibirsk, 1975

[17] A. M. Kytmanov, L. A. Aizenberg, O golomorfnosti nepreryvnykh funktsii, predstavimykh integralom Martinelli-Bokhnera, preprint IFSO-5M, Krasnoyarsk, 1975, 1–20

[18] B. A. Fuks, Vvedenie v teoriyu analiticheskikh funktsii mnogikh kompleksnykh peremennykh, Fizmatgiz, Moskva, 1962

[19] A. Koranyi, “The Poisson integral for generelized halfplanes and simmetric domains”, Ann. Math., 82:2 (1965), 332–350 | DOI | MR | Zbl

[20] K. Gofman, Banakhovy prostranstva analiticheskikh funktsii, IL, Moskva, 1963

[21] P. Montel, Normalnye semeistva analiticheskikh funktsii, ONTI, Moskva–Leningrad, 1936

[22] I. Danford, Dzh. T. Shvarts, Lineinye operatory. Obschaya teoriya, IL, Moskva, 1962

[23] M. Stoll, “Integral formulae for pluriharmonic function of bounded simmetric domains”, Duke Math. J., 41:2 (1974), 393–404 | DOI | MR | Zbl

[24] G. M. Khenkin, E. M. Chirka, “Granichnye svoistva golomorfnykh funktsii neskolkikh kompleksnykh peremennykh”, Sovremennye problemy matematiki, 4, VINITI, 1975, 13–142