Complex powers of hypoelliptic systems in $\mathbf R^n$
Sbornik. Mathematics, Tome 28 (1976) no. 3, pp. 291-300 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A system of differential operators in $\mathbf R^n$ with polynomial coefficients and whose symbol is hypoelliptic in $(x;\xi)$ is considered. The complex powers and the zeta-function of such a system are constructed. A meromorphic extension of the zeta-function is obtained, from which there follows an asymptotic result concerning the spectrum of the system. The results of Hironaka on the resolution of singularities are used in the proofs. Bibliography: 9 titles.
@article{SM_1976_28_3_a1,
     author = {S. A. Smagin},
     title = {Complex powers of hypoelliptic systems in~$\mathbf R^n$},
     journal = {Sbornik. Mathematics},
     pages = {291--300},
     year = {1976},
     volume = {28},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1976_28_3_a1/}
}
TY  - JOUR
AU  - S. A. Smagin
TI  - Complex powers of hypoelliptic systems in $\mathbf R^n$
JO  - Sbornik. Mathematics
PY  - 1976
SP  - 291
EP  - 300
VL  - 28
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1976_28_3_a1/
LA  - en
ID  - SM_1976_28_3_a1
ER  - 
%0 Journal Article
%A S. A. Smagin
%T Complex powers of hypoelliptic systems in $\mathbf R^n$
%J Sbornik. Mathematics
%D 1976
%P 291-300
%V 28
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1976_28_3_a1/
%G en
%F SM_1976_28_3_a1
S. A. Smagin. Complex powers of hypoelliptic systems in $\mathbf R^n$. Sbornik. Mathematics, Tome 28 (1976) no. 3, pp. 291-300. http://geodesic.mathdoc.fr/item/SM_1976_28_3_a1/

[1] V. V. Grushin, “Gipoellipticheskie differentsialnye uravneniya i psevdodifferentsialnye operatory s operatornoznachnymi simvolami”, Matem. sb., 88(130) (1972), 504–521 | Zbl

[2] I. N. Bernshtein, S. I. Gelfand, “O meromorfnosti funktsii $P^\lambda$”, Funkts. analiz, 3:1 (1969), 84–85 | MR

[3] M. F. Atyah, “Resolution of singularities and division of distributions”, Comm. Pure Appl. Math., 23:2 (1970), 145–150 | DOI | MR

[4] H. Hironaka, “Resolution of singularities of an algebraic variety over a field of characteristic zero”, Ann. Math., 79:1–2 (1964), 104–326 | MR

[5] I. M. Gelfand, G. E. Shilov, Oboboschennye funktsii i deistviya nad nimi, Fizmatgiz, Moskva, 1959

[6] R. T. Sili, “Stepeni ellipticheskogo operatora”, Matematika, 12:1 (1968), 96–112

[7] H. Delange, “Quelques theoremes tauberieus relatifs à l'integral de Laplace et leurs applications arithmetiques”, Rend. Semin. Math. Univ. Polytechn. Torino, 14 (1954–55), 87–103 | MR

[8] S. A. Smagin, “Drobnye stepeni gipoellipticheskogo operatora v $\mathbf{R}^n$”, DAN SSSR, 209:5 (1973), 1033–1036 | MR

[9] S. A. Smagin, “O meromorfnosti $P^z$, gde $P$—matritsa”, Funkts. analiz, 9:1 (1975), 85–86 | MR | Zbl