On an estimate of the Dirichlet integral in unbounded domains
Sbornik. Mathematics, Tome 28 (1976) no. 2, pp. 249-261
Cet article a éte moissonné depuis la source Math-Net.Ru
For an arbitrary unbounded region $\Omega$ satisfying a certain condition ($\operatorname{meas}\Omega=\infty$, and $\Omega$ can be such that $$ \lim_{R\to\infty}\frac1R\operatorname{meas}\bigl(\Omega\cap\{|x|<R\}\bigr)=0\bigr) $$ a lower bound for the Dirichlet integral $\int_\Omega|\nabla f(x)|^2\,dx$ is established for all functions $f(x)$ in $W_2^1(\Omega)\cap L_r(\Omega)$ which have finite moment $\mu_l=\int_\Omega|x|\,|f(x)|^l\,dx$, $0. The bound of the Dirichlet integral is a positive function of the variables $\mu_l$, $\|f\|_{L_r(\Omega)}$, $\|f\|_{L_2(\Omega)}$ and $\|f\|_{L_q(\Omega)}$, $q\geqslant1$, $l\leqslant q<2$, and is determined by certain geometric characteristics of $\Omega$. Bibliography: 4 titles.
@article{SM_1976_28_2_a7,
author = {A. K. Gushchin},
title = {On an estimate of the {Dirichlet} integral in unbounded domains},
journal = {Sbornik. Mathematics},
pages = {249--261},
year = {1976},
volume = {28},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1976_28_2_a7/}
}
A. K. Gushchin. On an estimate of the Dirichlet integral in unbounded domains. Sbornik. Mathematics, Tome 28 (1976) no. 2, pp. 249-261. http://geodesic.mathdoc.fr/item/SM_1976_28_2_a7/
[1] A. K. Guschin, “Nekotorye svoistva obobschennogo resheniya vtoroi kraevoi zadachi dlya parabolicheskogo uravneniya”, Matem. sb., 97 (139) (1975), 242–261 | Zbl
[2] J. Nash, “Continuity of solutions of parabolic and elliptic equations”, Amer. J. Math., 80 (1958), 931–953 ; Matematika, 4:1 (1960), 31–52 | DOI | MR
[3] A. K. Guschin, “Ob otsenkakh reshenii kraevykh zadach dlya parabolicheskogo uravneniya vtorogo poryadka”, Trudy matem. in-ta im. V. A. Steklova, CXXVI (1973), 5–45
[4] E. De Giorgi, “Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari”, Mem. Accad. Sci. Torino, ser. 3, 3 (1957), 25–43 ; Matematika, 4:6 (1960), 23–38 | MR | Zbl