A~sufficient condition for essential selfadjointness of polynomials in the Schr\"odinger operator
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 28 (1976) no. 2, pp. 169-185
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For an arbitrary natural number $m$ we obtain a criterion for essential selfadjointness (in the sense of Hartman and Ismagilov) of $m$ th order polynomials in the Schrödinger operator, subject only to restrictions on the potential on an infinite system of disjoint open sets which are in general separated from each other.
Bibliography: 19 titles.
			
            
            
            
          
        
      @article{SM_1976_28_2_a3,
     author = {Yu. B. Orochko},
     title = {A~sufficient condition for essential selfadjointness of polynomials in the {Schr\"odinger} operator},
     journal = {Sbornik. Mathematics},
     pages = {169--185},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1976_28_2_a3/}
}
                      
                      
                    TY - JOUR AU - Yu. B. Orochko TI - A~sufficient condition for essential selfadjointness of polynomials in the Schr\"odinger operator JO - Sbornik. Mathematics PY - 1976 SP - 169 EP - 185 VL - 28 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1976_28_2_a3/ LA - en ID - SM_1976_28_2_a3 ER -
Yu. B. Orochko. A~sufficient condition for essential selfadjointness of polynomials in the Schr\"odinger operator. Sbornik. Mathematics, Tome 28 (1976) no. 2, pp. 169-185. http://geodesic.mathdoc.fr/item/SM_1976_28_2_a3/
