On the factorization of compositions of a~countable number of Poisson laws
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 28 (1976) no. 2, pp. 153-167
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For the class of infinitely divisible distributions with characteristic function of the form
\begin{equation*}
\varphi(t,F)=\exp\biggl\{i\beta t+\int_{R^1}(e^{itx}-1)\nu\,\{dx\}\biggr\},
\tag{a}
\end{equation*}
where $\nu$ is a finite measure concentrated on the positive rationals, and such that for some positive $K$ we have
\begin{equation*}
\int_{|x|>y}\nu\,\{dx\}=O\bigl\{\exp(-Ky^2)\bigr\},\qquad y\to+\infty,
\tag{b}
\end{equation*}
we obtain necessary and sufficient conditions for membership in the class $I_0$ introduced by Yu. V. Linnik. These results generalize a theorem of Paul Lévy, which required finiteness of the Poisson spectrum in place of (b). The proof given here is much simpler than Lévy's.
Bibliography: 13 titles.
			
            
            
            
          
        
      @article{SM_1976_28_2_a2,
     author = {A. E. Fryntov},
     title = {On the factorization of compositions of a~countable number of {Poisson} laws},
     journal = {Sbornik. Mathematics},
     pages = {153--167},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1976_28_2_a2/}
}
                      
                      
                    A. E. Fryntov. On the factorization of compositions of a~countable number of Poisson laws. Sbornik. Mathematics, Tome 28 (1976) no. 2, pp. 153-167. http://geodesic.mathdoc.fr/item/SM_1976_28_2_a2/
