A~generalized integral and conjugate functions
Sbornik. Mathematics, Tome 28 (1976) no. 1, pp. 73-106

Voir la notice de l'article provenant de la source Math-Net.Ru

The author gives a descriptive definition of the $LG^*$-integral. The $LG^*$-integral extends the Lebesgue integral and coincides with it for nonnegative functions. For a function $f(x)$, $LG^*$-integrable on $[0,2\pi]$, the $LG^*$-Fourier series is defined and is almost everywhere $(C,1)$ summable to $f(x)$; the conjugate series is $(C,1)$ summable to $\widetilde f(x)$, which is also $LG^*$-integrable on $[0,2\pi]$, and is its $LG^*$-Fourier series. Bibliography: 12 titles.
@article{SM_1976_28_1_a4,
     author = {I. A. Vinogradova},
     title = {A~generalized integral and conjugate functions},
     journal = {Sbornik. Mathematics},
     pages = {73--106},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1976_28_1_a4/}
}
TY  - JOUR
AU  - I. A. Vinogradova
TI  - A~generalized integral and conjugate functions
JO  - Sbornik. Mathematics
PY  - 1976
SP  - 73
EP  - 106
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1976_28_1_a4/
LA  - en
ID  - SM_1976_28_1_a4
ER  - 
%0 Journal Article
%A I. A. Vinogradova
%T A~generalized integral and conjugate functions
%J Sbornik. Mathematics
%D 1976
%P 73-106
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1976_28_1_a4/
%G en
%F SM_1976_28_1_a4
I. A. Vinogradova. A~generalized integral and conjugate functions. Sbornik. Mathematics, Tome 28 (1976) no. 1, pp. 73-106. http://geodesic.mathdoc.fr/item/SM_1976_28_1_a4/