A formula and estimates for the solutions of the tangential Cauchy–Riemann equation
Sbornik. Mathematics, Tome 28 (1976) no. 1, pp. 49-71 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper an explicit integral formula is derived for solutions of the homogeneous tangential Cauchy–Riemann equation on the boundary of a strongly pseudoconvex domain in $\mathbf C^n$, and best possible estimates are obtained. Using this formula, some questions on the approximation of holomorphic functions on the boundary of a strongly pseudoconvex domain are studied. Bibliography: 27 titles.
@article{SM_1976_28_1_a3,
     author = {A. V. Romanov},
     title = {A~formula and estimates for the solutions of the tangential {Cauchy{\textendash}Riemann} equation},
     journal = {Sbornik. Mathematics},
     pages = {49--71},
     year = {1976},
     volume = {28},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1976_28_1_a3/}
}
TY  - JOUR
AU  - A. V. Romanov
TI  - A formula and estimates for the solutions of the tangential Cauchy–Riemann equation
JO  - Sbornik. Mathematics
PY  - 1976
SP  - 49
EP  - 71
VL  - 28
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1976_28_1_a3/
LA  - en
ID  - SM_1976_28_1_a3
ER  - 
%0 Journal Article
%A A. V. Romanov
%T A formula and estimates for the solutions of the tangential Cauchy–Riemann equation
%J Sbornik. Mathematics
%D 1976
%P 49-71
%V 28
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1976_28_1_a3/
%G en
%F SM_1976_28_1_a3
A. V. Romanov. A formula and estimates for the solutions of the tangential Cauchy–Riemann equation. Sbornik. Mathematics, Tome 28 (1976) no. 1, pp. 49-71. http://geodesic.mathdoc.fr/item/SM_1976_28_1_a3/

[1] A. Andreotti, E. Vesentini, “Carleman estimates for the Laplace-Beltrami equation on complex manifolds”, Inst. Hautes Etudes scient. Publ. Math., 1965, no. 25, 81–130 | DOI | MR

[2] O. V. Besov, “K teorii vlozheniya i prodolzheniya klassov differentsiruemykh funktsii”, Matem. zametki, 1:2 (1967), 235–244 | Zbl

[3] T. Gamelin, Ravnomernye algebry, izd-vo «Mir», Moskva, 1973

[4] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, izd-vo «Nauka», Moskva, 1966 | MR

[5] R. E. Valskii, “O merakh, ortogonalnykh analiticheskim funktsiyam v $C^n$”, DAN SSSR, 198:3 (1971), 502–506 | MR

[6] Sh. A. Dautov, “O formakh, ortogonalnykh golomorfnym funktsiyam pri integrirovanii po granitse strogo psevdovypukloi oblasti”, DAN SSSR, 203:1 (1972), 16–18 | MR | Zbl

[7] Sh. A. Dautov, “O formakh, ortogonalnykh golomorfnym funktsiyam, i blizkikh voprosakh”, Funkts. analiz, 6:4 (1972), 81–82 | MR | Zbl

[8] G. B. Folland, E. M. Stein, “Parametrices and estimates for the complex on strongly pseudoconvex boundaries”, Bull. Amer. Math. Soc., 80:2 (1974), 253–258 | DOI | MR | Zbl

[9] L. Hörmander, “$L^2$-estimates and existence theorems for the $\overline{\partial}$-operator”, Acta math., 113:1–2 (1965), 89–152 | DOI | MR | Zbl

[10] N. Kerzman, “Hölder and $L^p$-estimates for solutions of $\overline{\partial}u=f$ in strongly pseudoconvex domains”, Comm. Pure Appl. Math., 24:3 (1971), 301–379 | DOI | MR

[11] J. J. Kohn, “Harmonic integrals on strongly pseudoconvex manifolds”, Ann. Math., 78 (1963), 112–148 ; 79 (1964), 450–472 | DOI | MR | Zbl | DOI | MR | Zbl

[12] J. J. Kohn, “Boundaries of complex manifolds”, Proc. Conf. on Complex Analysis (Minneapolis, 1964), Springer-Verlag, 1965, 81–94 | MR

[13] J. J. Kohn,, “On the extension of holomorphic functions from the boundaries of a complex manifold”, Ann. Math., 81 (1965), 451–472 | DOI | MR | Zbl

[14] W. Koppelman, “The Caushy integral for functions of several complex variables”, Bull. Amer. Math. Soc., 73:3 (1967), 373–377 | DOI | MR | Zbl

[15] G. Krantz, Optimal $L^p$ and Lipshitz estimates for the $\overline{\partial}$-equation, Dissertation, Princeton, 1974

[16] J. Lieb, “Die Caushy - Riemanshen Differentialgleichungen auf strong pseudohonvexen Gebieten”, Math. Ann., 190:1 (1970), 6–45 | DOI | MR

[17] C. B. Morrey, “The analytic embedding of abstract real-analytic manifolds”, Ann. Math., 68 (1958), 159–201 | DOI | MR | Zbl

[18] S. M. Nikolskii, “Neravenstva dlya tselykh funktsii konechnoi stepeni i ikh primenenie k teorii differentsiruemykh funktsii mnogikh peremennykh”, Trudy matem. in-ta imeni V. A. Steklova, XXXVIII (1951), 244–278

[19] R. Nirenberg, “On the H. Lewy extension phenomenon”, Trans. Amer. Math. Soc., 168 (1972), 337–355 | DOI | MR

[20] N. Ovrelid, “Integral representation formulas and $L$-estimates for the $\overline{\partial}$-equation”, Math. Scand., 29 (1971), 219–223 | MR

[21] A. V. Romanov, G. M. Khenkin, “Tochnye gëlderovskie otsenki reshenii $\overline{\partial}$-uravneniya”, Izv. AN SSSR, seriya matem., 35 (1971), 1171–1183 | MR | Zbl

[22] A. V. Romanov, “Formula i otsenki dlya reshenii kasatelnogo uravneniya Koshi-Rimana”, DAN SSSR, 220:3 (1975), 36–39 | MR

[23] I. Stein, Singulyarnye integraly i differentsialnye svoistva funktsii, izd-vo «Mir», Moskva, 1973 | MR

[24] G. M. Khenkin, “Integralnoe predstavlenie funktsii, golomorfnykh v strogo psevdovypuklykh oblastyakh, i nekotorye prilozheniya”, Matem. sb., 78(120) (1969), 611–632 | Zbl

[25] G. M. Khenkin, “Integralnoe predstavlenie funktsii v strogo psevdovypuklykh oblastyakh i prilozheniya k $\overline{\partial}$-zadache”, Matem. sb., 82 (124) (1970), 300–308 | Zbl

[26] B. M. Weinstock, “Approximatiion by holomorphic functions on certain product sets in $C^n$”, Pacific J. Math., 43:3 (1972), 811–822 | MR | Zbl

[27] A. Andreotti, C. O. Hill, E. E. Levi, “Convexity and the Hans Lewy problem. Part I: reduction to vanishing theorems”, Ann. Scuola Norm. Sup. Pisa, 26:11 (1972), 325–363 | MR | Zbl