On infinitesimal bendings of troughs of revolution. II
Sbornik. Mathematics, Tome 28 (1976) no. 1, pp. 41-48 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that if a trough of revolution $S\in C^1$ does not admit $C^1$ infinitesimal bendings with the parabolic parallel fixed, then $S$ possesses second-order $C^1$-rigidity, and the existence of first-order bendings is determined by a certain effectively verifiable necessary and sufficient condition on the meridian. Bibliography: 4 titles.
@article{SM_1976_28_1_a2,
     author = {I. Kh. Sabitov},
     title = {On infinitesimal bendings of troughs of {revolution.~II}},
     journal = {Sbornik. Mathematics},
     pages = {41--48},
     year = {1976},
     volume = {28},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1976_28_1_a2/}
}
TY  - JOUR
AU  - I. Kh. Sabitov
TI  - On infinitesimal bendings of troughs of revolution. II
JO  - Sbornik. Mathematics
PY  - 1976
SP  - 41
EP  - 48
VL  - 28
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1976_28_1_a2/
LA  - en
ID  - SM_1976_28_1_a2
ER  - 
%0 Journal Article
%A I. Kh. Sabitov
%T On infinitesimal bendings of troughs of revolution. II
%J Sbornik. Mathematics
%D 1976
%P 41-48
%V 28
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1976_28_1_a2/
%G en
%F SM_1976_28_1_a2
I. Kh. Sabitov. On infinitesimal bendings of troughs of revolution. II. Sbornik. Mathematics, Tome 28 (1976) no. 1, pp. 41-48. http://geodesic.mathdoc.fr/item/SM_1976_28_1_a2/

[1] I. Kh. Sabitov, “O beskonechno malykh izgibaniyakh zhelobov vrascheniya, I”, Matem. sb., 98(140) (1975), 133–129 | MR

[2] T. Minagawa, T. Rado, “On the infinitesimal regidity of surfaces of revolution”, Math. Z., 59 (1953), 151–163 | DOI | MR | Zbl

[3] I. Kh. Sabitov, “Vozmozhnye obobscheniya lemmy Minagava-Rado o zhestkosti poverkhnosti vrascheniya s zakreplennoi parallelyu”, Matem. zametki, 19:1 (1976), 123–132 | MR | Zbl

[4] N. G. Perlova, I. Kh. Sabitov, “Zhestkost vtorogo poryadka zhelobov vrascheniya klassa $C^2$”, Vestnik MGU, seriya matem. i mekh., 1975, no. 5, 47–52 | MR | Zbl