On infinitesimal bendings of troughs of revolution.~II
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 28 (1976) no. 1, pp. 41-48
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is shown that if a trough of revolution $S\in C^1$ does not admit $C^1$ infinitesimal bendings with the parabolic parallel fixed, then $S$ possesses second-order $C^1$-rigidity, and the existence of first-order bendings is determined by a certain effectively verifiable necessary and sufficient condition on the meridian.
Bibliography: 4 titles.
			
            
            
            
          
        
      @article{SM_1976_28_1_a2,
     author = {I. Kh. Sabitov},
     title = {On infinitesimal bendings of troughs of {revolution.~II}},
     journal = {Sbornik. Mathematics},
     pages = {41--48},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1976_28_1_a2/}
}
                      
                      
                    I. Kh. Sabitov. On infinitesimal bendings of troughs of revolution.~II. Sbornik. Mathematics, Tome 28 (1976) no. 1, pp. 41-48. http://geodesic.mathdoc.fr/item/SM_1976_28_1_a2/
