On infinitesimal bendings of troughs of revolution. II
Sbornik. Mathematics, Tome 28 (1976) no. 1, pp. 41-48
Cet article a éte moissonné depuis la source Math-Net.Ru
It is shown that if a trough of revolution $S\in C^1$ does not admit $C^1$ infinitesimal bendings with the parabolic parallel fixed, then $S$ possesses second-order $C^1$-rigidity, and the existence of first-order bendings is determined by a certain effectively verifiable necessary and sufficient condition on the meridian. Bibliography: 4 titles.
@article{SM_1976_28_1_a2,
author = {I. Kh. Sabitov},
title = {On infinitesimal bendings of troughs of {revolution.~II}},
journal = {Sbornik. Mathematics},
pages = {41--48},
year = {1976},
volume = {28},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1976_28_1_a2/}
}
I. Kh. Sabitov. On infinitesimal bendings of troughs of revolution. II. Sbornik. Mathematics, Tome 28 (1976) no. 1, pp. 41-48. http://geodesic.mathdoc.fr/item/SM_1976_28_1_a2/
[1] I. Kh. Sabitov, “O beskonechno malykh izgibaniyakh zhelobov vrascheniya, I”, Matem. sb., 98(140) (1975), 133–129 | MR
[2] T. Minagawa, T. Rado, “On the infinitesimal regidity of surfaces of revolution”, Math. Z., 59 (1953), 151–163 | DOI | MR | Zbl
[3] I. Kh. Sabitov, “Vozmozhnye obobscheniya lemmy Minagava-Rado o zhestkosti poverkhnosti vrascheniya s zakreplennoi parallelyu”, Matem. zametki, 19:1 (1976), 123–132 | MR | Zbl
[4] N. G. Perlova, I. Kh. Sabitov, “Zhestkost vtorogo poryadka zhelobov vrascheniya klassa $C^2$”, Vestnik MGU, seriya matem. i mekh., 1975, no. 5, 47–52 | MR | Zbl