On the infiniteness of the discrete spectrum of the energy operator of a system of $n$ particles
Sbornik. Mathematics, Tome 28 (1976) no. 1, pp. 27-39 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Hamiltonian $H$ of a quantum system of $n$ particles is considered in spaces of functions that are transformed by multiple irreducible representations of a symmetry group of $H$, namely the direct product of the symmetric group by an arbitrary compact subgroup of the full rotation group. Sufficient conditions are found for the discrete spectrum of $H$ to be infinite. The results obtained permit one in many cases to reduce this problem to that for an operator of a two-particle system. Bibliography: 18 titles.
@article{SM_1976_28_1_a1,
     author = {M. A. Antonets and G. M. Zhislin and I. A. Shereshevskii},
     title = {On the infiniteness of the discrete spectrum of the energy operator of a~system of~$n$ particles},
     journal = {Sbornik. Mathematics},
     pages = {27--39},
     year = {1976},
     volume = {28},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1976_28_1_a1/}
}
TY  - JOUR
AU  - M. A. Antonets
AU  - G. M. Zhislin
AU  - I. A. Shereshevskii
TI  - On the infiniteness of the discrete spectrum of the energy operator of a system of $n$ particles
JO  - Sbornik. Mathematics
PY  - 1976
SP  - 27
EP  - 39
VL  - 28
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1976_28_1_a1/
LA  - en
ID  - SM_1976_28_1_a1
ER  - 
%0 Journal Article
%A M. A. Antonets
%A G. M. Zhislin
%A I. A. Shereshevskii
%T On the infiniteness of the discrete spectrum of the energy operator of a system of $n$ particles
%J Sbornik. Mathematics
%D 1976
%P 27-39
%V 28
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1976_28_1_a1/
%G en
%F SM_1976_28_1_a1
M. A. Antonets; G. M. Zhislin; I. A. Shereshevskii. On the infiniteness of the discrete spectrum of the energy operator of a system of $n$ particles. Sbornik. Mathematics, Tome 28 (1976) no. 1, pp. 27-39. http://geodesic.mathdoc.fr/item/SM_1976_28_1_a1/

[1] M. Sh. Birman, “O spektre singulyarnykh granichnykh zadach”, Matem. sb., 55(97) (1961), 125–174 | MR | Zbl

[2] I. M. Glazman, Pryamye metody kachestvennogo spektralnogo analiza singulyarnykh differentsialnykh operatorov, Fizmatgiz, Moskva, 1963 | MR

[3] G. M. Zhislin, “Konechnost diskretnogo spektra v kvantovoi probleme $n$ chastits”, Teor. matem. fizika, 21:1 (1974), 60–73 | MR

[4] G. M. Zhislin, “Issledovanie spektra operatora Shredingera dlya sistem mnogikh chastits”, Trudy Mosk. matem. ob-va, IX (1960), 81–120

[5] J. J. Uchiyama, “On the discrete eigenvalues of the many-particle system”, Publ. RIMS, Kyoto Univ., Ser A, 2:5 (1966), 117–132 | DOI | MR

[6] G. M. Zhislin, A. G. Sigalov, “O spektre operatora energii dlya atomov s nepodvizhnymi yadrami na podprostranstvakh, otvechayuschikh neprivodimym predstavleniyam gruppy perestanovok”, Izv. AN SSSR, seriya matem., 29 (1965), 835–860 | MR | Zbl

[7] G. M. Zhislin, A. G. Sigalov, “O nekotorykh matematicheskikh zadachakh teorii atomnykh spektrov”, Izv. AN SSSR, seriya matem., 29 (1965), 1261–1272 | MR | Zbl

[8] G. M. Zhislin, “Issledovanie spektra differentsialnykh operatorov kvantovo-mekhanicheskikh sistem mnogikh chastits v prostranstvakh funktsii zadannoi simmetrii”, Izv. AN SSSR, seriya matem., 33 (1969), 590–649 | Zbl

[9] B. Simon, “On the infinitude or finiteness of the number of bound states of an $n$-body quantum system”, Helv. Phys. Acta, 43 (1970), 607–630 | MR

[10] E. Balslev, “Schrödinger operators with symmetries”, Ann. Phys., 73:1 (1972) | MR

[11] A. G. Sigalov, I. M. Sigal, “Invariantnoe otnositelno perestanovok tozhdestvennykh chastits opisanie spektra operatora energii kvantovo-mekhanicheskikh sistem”, Teor. matem. fizika, 5:1 (1970), 73–93 | MR

[12] K. Jörgens, J. Weidmann, Spectral properties of Hamiltonien operators, Berlin, 1973; K. Iorgens, I. Vaidmann, Spektralnye svoistva gamiltonovykh operatorov, izd-vo «Mir», Moskva, 1976 | MR

[13] M. A. Antonets, G. M. Zhislin, I. A. Shereshevskii, “O diskretnom spektre gamiltoniana kvantovoi sistemy $n$ chastits”, Teor. matem. fizika, 16:2 (1973), 235–246 | MR | Zbl

[14] R. Kurant, D. Gilbert, Metody matematicheskoi fiziki, IL, Moskva, 1951

[15] W. Hunziker, “On spectra of Schr̈odinger multiparticle hamiltonians”, Helv. Phys. Acta, 39:5 (1966), 451–462 | MR | Zbl

[16] W. Hunziker, “On the space-time behavior of Shrödinger wavefunctions”, J. Math. Phys., 7 (1966), 300–304 | DOI | MR | Zbl

[17] I. P. Natanson, Teoriya funktsii veschestvennoi peremennoi, Gostekhizdat, Moskva, 1957 | MR

[18] D. R. Yafaev, “K teorii diskretnogo spektra trekhchastichnogo operatora Shredingera”, Matem. sb., 94 (136) (1974), 567–593 | Zbl