The central limit theorem for nonhomogeneous $U$-statistics of finitely dependent random variables
Sbornik. Mathematics, Tome 27 (1975) no. 4, pp. 554-563
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper the notion of homogeneous vector-valued $U$-statistic is introduced and a central limit theorem is proved for such statistics of a sequence of finitely dependent random variables, which generalizes analogous results for ordinary $U$-statistics. The convergence of finite-dimensional distributions of some random processes generated by $U$-statistics is also studied.
Bibliography: 5 titles.
@article{SM_1975_27_4_a6,
author = {V. G. Mikhailov},
title = {The central limit theorem for nonhomogeneous $U$-statistics of finitely dependent random variables},
journal = {Sbornik. Mathematics},
pages = {554--563},
publisher = {mathdoc},
volume = {27},
number = {4},
year = {1975},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1975_27_4_a6/}
}
TY - JOUR AU - V. G. Mikhailov TI - The central limit theorem for nonhomogeneous $U$-statistics of finitely dependent random variables JO - Sbornik. Mathematics PY - 1975 SP - 554 EP - 563 VL - 27 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1975_27_4_a6/ LA - en ID - SM_1975_27_4_a6 ER -
V. G. Mikhailov. The central limit theorem for nonhomogeneous $U$-statistics of finitely dependent random variables. Sbornik. Mathematics, Tome 27 (1975) no. 4, pp. 554-563. http://geodesic.mathdoc.fr/item/SM_1975_27_4_a6/