Analytic representation of $CR$-functions
Sbornik. Mathematics, Tome 27 (1975) no. 4, pp. 526-553 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The author derives a representation for functions satisfying the tangential Cauchy–Riemann equations on a real hypersurface in $\mathbf C^n$ in terms of a “jump” in the boundary values of certain analytic functions. This representation is then applied to local and global problems in holomorphic extension from the hypersurface, to the problem of polynomial approximation, and to a curvilinear “edge of the wedge” theorem. Bibliography: 25 titles.
@article{SM_1975_27_4_a5,
     author = {E. M. Chirka},
     title = {Analytic representation of $CR$-functions},
     journal = {Sbornik. Mathematics},
     pages = {526--553},
     year = {1975},
     volume = {27},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_27_4_a5/}
}
TY  - JOUR
AU  - E. M. Chirka
TI  - Analytic representation of $CR$-functions
JO  - Sbornik. Mathematics
PY  - 1975
SP  - 526
EP  - 553
VL  - 27
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1975_27_4_a5/
LA  - en
ID  - SM_1975_27_4_a5
ER  - 
%0 Journal Article
%A E. M. Chirka
%T Analytic representation of $CR$-functions
%J Sbornik. Mathematics
%D 1975
%P 526-553
%V 27
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1975_27_4_a5/
%G en
%F SM_1975_27_4_a5
E. M. Chirka. Analytic representation of $CR$-functions. Sbornik. Mathematics, Tome 27 (1975) no. 4, pp. 526-553. http://geodesic.mathdoc.fr/item/SM_1975_27_4_a5/

[1] I. I. Privalov, Granichnye svoistva analiticheskikh funktsii, Gostekhizdat, Moskva–Leningrad, 1950

[2] G. Bremerman, Raspredeleniya, kompleksnye peremennye i preobrazovaniya Fure, izd-vo «Mir», Moskva, 1968 | MR

[3] V. S. Vladimirov, Metody teorii funktsii mnogikh kompleksnykh peremennykh, izd-vo «Nauka», Moskva, 1964 | MR

[4] R. Ganning, Kh. Rossi, Analiticheskie funktsii mnogikh kompleksnykh peremennykh, izd-vo «Mir», Moskva, 1969 | MR

[5] H. Federer, Geometric measure theory, Grundlehren math. Wiss. 153, Springer, Berlin–Heidelberg–New York, 1969 | MR

[6] G. M. Khenkin, E. M. Chirka, “Granichnye svoistva golomorfnykh funktsii neskolkikh kompleksnykh peremennykh”, Sovremennye problemy matematiki, 4, VINITI, Moskva, 1975, 13–142

[7] L. Khërmander, Vvedenie v teoriyu funktsii neskolkikh kompleksnykh peremennykh, izd-vo «Mir», Moskva, 1968 | MR

[8] G. M. Khenkin, “Integralnoe predstavlenie funktsii v strogo psevdovypuklykh oblastyakh i prilozheniya k $\overline{\partial}$-zadache”, Matem. sb., 82 (124) (1970), 300–308 | Zbl

[9] N. Ovrelid, “Integral representation formulas and $L^p$-estimates for the $\overline{\partial}$-equation”, Math. Scand., 29:1 (1971), 137–160 | MR

[10] A. V. Romanov, “Formula i otsenki dlya reshenii kasatelnogo uravneniya Koshi-Rimana”, Matem. sb., 99(141):1 (1976), 58–83 | MR | Zbl

[11] V. A. Kakichev, “Kharakter nepreryvnosti granichnykh znachenii integrala Martinelli-Bokhnera”, Uchenye zapiski Mosk. obl. ped. in-ta, XCVI:6 (1960), 145–150

[12] V. S. Vinogradov, “Ob analoge integrala tipa Koshi dlya analiticheskikh funktsii mnogikh kompleksnykh peremennykh”, DAN SSSR, 178:2 (1968), 282–285 | Zbl

[13] Sh. A. Dautov, A. M. Kytmanov, “O granichnykh znacheniyakh integrala tipa Martinelli-Bokhnera”, Nekotorye svoistva golomorfnykh funktsii mnogikh kompleksnykh peremennykh, Krasnoyarsk, 1973, 49–54 | MR

[14] B. Malgranzh, Idealy differentsiruemykh funktsii, izd-vo «Mir», Moskva, 1968

[15] R. Narasimkhan, Analiz na deistvitelnykh i kompleksnykh mnogoobraziyakh, izd-vo «Mir», Moskva, 1971

[16] S. Bochner, “Analytic and meromorphic continuation by means of Green's formula”, Ann. Math., 44:4 (1943), 652–673 | DOI | MR | Zbl

[17] B. M. Weinstock, “An approximation theorem for $\overline{\partial}$-closed forms of type $(n, n-1)$”, Proc. Amer. Math. Soc., 26:4 (1970), 625–628 | DOI | MR | Zbl

[18] Sh. A. Dautov, “O $\overline{\partial}$-zamknutykh formakh tipa $(p, n-1)$ kak analoge golomorfnykh funktsii odnogo kompleksnogo peremennogo”, Golomorfnye funktsii mnogikh kompleksnykh peremennykh, Krasnoyarsk, 1972, 21–36 | MR

[19] F. R. Harvey, H. B. Lawson, Jr., “Boundaries of complex analytic verieties”, Bull. Amer. Math. Soc., 80:1 (1974), 180–183 | DOI | MR | Zbl

[20] F. R. Harvey, H. B. Lawson, Jr., On boundaries of complex analytic verieties, I, Preprint

[21] H. Lewy, “On the local character of the solutions of an atypical linear differential equation in three variables and a related theorem for regular functions of two complex variables”, Ann. Math., 64:3 (1956), 514–522 | DOI | MR | Zbl

[22] H. Rossi, “A generalization of a theorem of Hans Lewy”, Proc. Amer. Math. Soc., 19:2 (1968), 436–440 | DOI | MR | Zbl

[23] E. M. Chirka, “Priblizhenie golomorfnymi funktsiyami na gladkikh mnogoobraziyakh v $\mathbf{C}^n$”, Matem. sb., 78 (120) (1969), 101–123 | Zbl

[24] E. M. Chirka, “Priblizhenie mnogochlenami na zvezdnykh podmnozhestvakh $\mathbf{C}^n$”, Matem. zametki, 14:1 (1973), 55–60 | Zbl

[25] S. I. Pinchuk, “Teorema Bogolyubova ob «ostrie klina» dlya porozhdayuschikh mnogoobrazii”, Matem. sb., 94 (136) (1974), 468–482 | Zbl