On lacunary series
Sbornik. Mathematics, Tome 27 (1975) no. 4, pp. 481-502 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper investigates properties of trigonometric $S_p$-systems ($p>2$) and Banach systems. In particular, the following theorems are established. Theorem 1. {\it Let the system $\{\cos n_kx,\sin n_kx\}$ be an $S_p$-system $(n_k$ integers, $p>2)$. Then if the series $a_0+\sum a_k\cos n_kx+b_k\sin n_k x$ converges on a set of positive measure it follows that $a_0^2+\sum a_k^2+b_k^2<\infty$. If the same series converges to zero on a set of positive measure, all its coefficients are zero}. Theorem 2. {\it Let the system $\{\cos n_kx,\sin n_kx\}$ be a Banach system. Let $\alpha(\{n_k\},[a,b])$ be the number of terms of the sequence $\{n_k\}$ that lie on $[a,b]$. Then} $$ \lim_{h\to+\infty}\sup_a\frac{\alpha(\{n_k\},[a,a+h])}h=0. $$ Bibliography: 12 titles.
@article{SM_1975_27_4_a2,
     author = {I. M. Mikheev},
     title = {On~lacunary series},
     journal = {Sbornik. Mathematics},
     pages = {481--502},
     year = {1975},
     volume = {27},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_27_4_a2/}
}
TY  - JOUR
AU  - I. M. Mikheev
TI  - On lacunary series
JO  - Sbornik. Mathematics
PY  - 1975
SP  - 481
EP  - 502
VL  - 27
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1975_27_4_a2/
LA  - en
ID  - SM_1975_27_4_a2
ER  - 
%0 Journal Article
%A I. M. Mikheev
%T On lacunary series
%J Sbornik. Mathematics
%D 1975
%P 481-502
%V 27
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1975_27_4_a2/
%G en
%F SM_1975_27_4_a2
I. M. Mikheev. On lacunary series. Sbornik. Mathematics, Tome 27 (1975) no. 4, pp. 481-502. http://geodesic.mathdoc.fr/item/SM_1975_27_4_a2/

[1] K. Weierstrass, “Über continuirlische Functionen eines reelen Arguments, die für keinen Werth des letzteren einen bestimmten Differentialquotienten besitzen”, Königl. Acad. Wis., Mathematische Werke, II, 1872, 71–74

[2] G. H. Hardy, “Weierstrass's nondifferentiable function”, Trans. Amer. Math. Soc., 17 (1916), 301–325 | DOI | MR | Zbl

[3] J. Hadamard, “Essai sur l'etude des fonctions donées par leur developpement de Taylor”, J. Math., 8 (1892), 101–186

[4] F. Risz, “Über die Fourier Koeffizienten einer stetigen Function von beschränkter Schankung”, Math. Z., 2 (1918), 312–315 | DOI | MR

[5] A. Zygmund, “On lacunary trigonometrical series”, Trans. Amer. Math. Soc., 34 (1932), 435–446 | DOI | MR | Zbl

[6] V. F. Gaposhkin, “Lakunarnye ryady i nezavisimye funktsii”, Uspekhi matem. nauk, XXI:6 (132) (1966), 3–82

[7] A. Zygmund, “On a theorem of Hadamard”, Ann. Soc. Polon. Math., 21:1 (1948), 52–69 | MR | Zbl

[8] A. Bonami, Y. Meyer, “Proprietés de convergence de certaines séries trigonométriques”, C.r. Acad. Sci. Paris, 269:2 (1969), 68–70 | MR | Zbl

[9] I. M. Mikheev, “O teoreme edinstvennosti dlya ryadov s lakunami”, Matem. zametki, 17:6 (1975), 825–838 | MR | Zbl

[10] W. Rudin, “Trigonometrical series with gaps”, J. Math. and Mech., 9:2 (1960), 203–227 | MR | Zbl

[11] J.-P. Kahane, “Lacunary Taylor and Fourier series”, Bull. Amer. Math. Soc., 70:2 (1964), 199–213 | DOI | MR | Zbl

[12] K. F. Roth, “Sur quelques ensemble d'entiers”, C. r. Acad. Sci. Paris, 234:4 (1952), 388–390 | MR | Zbl