On~lacunary series
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 27 (1975) no. 4, pp. 481-502
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This paper investigates properties of trigonometric $S_p$-systems ($p>2$) and Banach systems. In particular, the following theorems are established.
Theorem 1. {\it Let the system $\{\cos n_kx,\sin n_kx\}$ be an $S_p$-system $(n_k$ integers, $p>2)$. Then if the series $a_0+\sum a_k\cos n_kx+b_k\sin n_k x$ converges on a set of positive measure it follows that $a_0^2+\sum a_k^2+b_k^2\infty$. If the same series converges to zero on a set of positive measure, all its coefficients are zero}.
Theorem 2. {\it Let the system $\{\cos n_kx,\sin n_kx\}$ be a Banach system. Let $\alpha(\{n_k\},[a,b])$ be the number of terms of the sequence $\{n_k\}$ that lie on $[a,b]$. Then}
$$
\lim_{h\to+\infty}\sup_a\frac{\alpha(\{n_k\},[a,a+h])}h=0.
$$ Bibliography: 12 titles.
			
            
            
            
          
        
      @article{SM_1975_27_4_a2,
     author = {I. M. Mikheev},
     title = {On~lacunary series},
     journal = {Sbornik. Mathematics},
     pages = {481--502},
     publisher = {mathdoc},
     volume = {27},
     number = {4},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_27_4_a2/}
}
                      
                      
                    I. M. Mikheev. On~lacunary series. Sbornik. Mathematics, Tome 27 (1975) no. 4, pp. 481-502. http://geodesic.mathdoc.fr/item/SM_1975_27_4_a2/
