Free products of networks and free symmetrizers of graphs
Sbornik. Mathematics, Tome 27 (1975) no. 4, pp. 463-480 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Connected locally finite vertex-symmetric graphs, also called networks, are the subject of the article. The operation of a free product, preserving the vertex symmetry of graphs, is introduced. Properties of free products are studied, and a connection with free products of groups is established. A class of networks, called free symmetrizers of graphs, in some respects analogues of free products, is introduced. Their properties and a relation to free products and graphs of groups are studied. Figures: 3. Bibliography: 12 titles.
@article{SM_1975_27_4_a1,
     author = {D. V. Znoiko},
     title = {Free products of networks and free symmetrizers of graphs},
     journal = {Sbornik. Mathematics},
     pages = {463--480},
     year = {1975},
     volume = {27},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_27_4_a1/}
}
TY  - JOUR
AU  - D. V. Znoiko
TI  - Free products of networks and free symmetrizers of graphs
JO  - Sbornik. Mathematics
PY  - 1975
SP  - 463
EP  - 480
VL  - 27
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1975_27_4_a1/
LA  - en
ID  - SM_1975_27_4_a1
ER  - 
%0 Journal Article
%A D. V. Znoiko
%T Free products of networks and free symmetrizers of graphs
%J Sbornik. Mathematics
%D 1975
%P 463-480
%V 27
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1975_27_4_a1/
%G en
%F SM_1975_27_4_a1
D. V. Znoiko. Free products of networks and free symmetrizers of graphs. Sbornik. Mathematics, Tome 27 (1975) no. 4, pp. 463-480. http://geodesic.mathdoc.fr/item/SM_1975_27_4_a1/

[1] V. K. Bulitko, K probleme konechnosti grafa s zadannymi okruzheniyami vershin. Obschaya teoriya sistem, Kiev, 1973 | Zbl

[2] V. G. Vizing, “Nekotorye nereshennye zadachi v teorii grafov”, Uspekhi matem. nauk, XXIII:6 (144), 117–134 | MR

[3] I. Grossman, V. Magnus, Gruppy i ikh grafy, izd-vo «Mir», Moskva, 1971 | MR

[4] F. Kharari, Teoriya grafov, izd-vo «Mir», Moskva, 1973 | MR

[5] W. Dörfler, “Automorphismen von $X$-Summen von Graphen”, Czech. Math. J., 22 (97) (1972), 581–589 | MR | Zbl

[6] W. Dörfler, “Über Produkte von endlichen zusammenhangenden Graphen”, Sitzungsber. Öster. Akad. Wiss., Math.-natur. Kl, 179:4–7 (1971) | MR | Zbl

[7] W. Imrich, “Assoziative Produkte von Graphen”, Sitzungsber. Öster. Akad. Wiss., Math.-natur. Kl, 189:4–7 (1972), 203–239 | MR

[8] W. Imrich, “Über das schwache Kartesische Produkt von Graphen”, J. Comb. Theory, 11:1 (1971), 1–16 | MR | Zbl

[9] D. J. Miller, “The automorphism group of a product of graphs”, Proc. Amer. Math. Soc., 25:1 (1970), 24–28 | DOI | MR | Zbl

[10] G. Sabidussi, “Vertex-transitive graphs”, Monatsh. Math., 68:5 (1964), 426–438 | DOI | MR | Zbl

[11] M. E. Watkins, “On the action of non-Abelian groups on graphs”, J. Comb. Theory, 11:2 (1971), 95–104 | DOI | MR | Zbl

[12] M. E. Watkins, On graphical regular representations of $C_n\times Q$, Lect. Notes Math., 303, 1972 | MR | Zbl