@article{SM_1975_27_3_a6,
author = {S. N. Kruzhkov},
title = {Generalized solutions of the {Hamilton{\textendash}Jacobi} equations of eikonal type. {I.~Formulation} of the problems; existence, uniqueness and stability theorems; some properties of the solutions},
journal = {Sbornik. Mathematics},
pages = {406--446},
year = {1975},
volume = {27},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1975_27_3_a6/}
}
TY - JOUR AU - S. N. Kruzhkov TI - Generalized solutions of the Hamilton–Jacobi equations of eikonal type. I. Formulation of the problems; existence, uniqueness and stability theorems; some properties of the solutions JO - Sbornik. Mathematics PY - 1975 SP - 406 EP - 446 VL - 27 IS - 3 UR - http://geodesic.mathdoc.fr/item/SM_1975_27_3_a6/ LA - en ID - SM_1975_27_3_a6 ER -
%0 Journal Article %A S. N. Kruzhkov %T Generalized solutions of the Hamilton–Jacobi equations of eikonal type. I. Formulation of the problems; existence, uniqueness and stability theorems; some properties of the solutions %J Sbornik. Mathematics %D 1975 %P 406-446 %V 27 %N 3 %U http://geodesic.mathdoc.fr/item/SM_1975_27_3_a6/ %G en %F SM_1975_27_3_a6
S. N. Kruzhkov. Generalized solutions of the Hamilton–Jacobi equations of eikonal type. I. Formulation of the problems; existence, uniqueness and stability theorems; some properties of the solutions. Sbornik. Mathematics, Tome 27 (1975) no. 3, pp. 406-446. http://geodesic.mathdoc.fr/item/SM_1975_27_3_a6/
[1] M. Born, E. Volf, Osnovy optiki, izd-vo «Nauka», Moskva, 1973
[2] I. G. Petrovskii, Lektsii po teorii obyknovennykh differentsialnykh uravnenii, izd-vo «Nauka», Moskva, 1964 | MR
[3] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mischenko, Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, Moskva, 1961
[4] S. N. Kruzhkov, “Zadacha Koshi v tselom dlya nelineinykh uravnenii i nekotorykh kvazilineinykh sistem pervogo poryadka so mnogimi peremennymi”, DAN SSSR, 155:4 (1964), 743–746
[5] S. N. Kruzhkov, “Obobschennye resheniya nelineinykh uravnenii pervogo poryadka i nekotorye zadachi dlya kvazilineinykh parabolicheskikh uravnenii”, Vestnik MGU, seriya matem. i mekh., 1964, no. 6, 65–74
[6] S. N. Kruzhkov, “O resheniyakh nelineinykh uravnenii pervogo poryadka”, DAN SSSR, 167:2 (1966), 286–289 | Zbl
[7] S. N. Kruzhkov, “Metod konechnykh raznostei dlya nelineinykh uravnenii pervogo poryadka so mnogimi nezavisimymi peremennymi”, Zh. vych. matem. i matem. fiziki, 6:5 (1966), 884–894 | Zbl
[8] S. N. Kruzhkov, “Obobschennye resheniya nelineinykh uravnenii pervogo poryadka so mnogimi nezavisimymi peremennymi, I”, Matem. sb., 70(112) (1966), 394–415 | Zbl
[9] S. N. Kruzhkov, “Obobschennye resheniya nelineinykh uravnenii pervogo poryadka so mnogimi nezavisimymi peremennymi, II”, Matem. sb., 72(114) (1967), 108–134 | Zbl
[10] S. N. Kruzhkov, Nelineinye uravneniya s chastnymi proizvodnymi (lektsii), ch. 2. Uravneniya pervogo poryadka, rotaprint MGU, Moskva, 1970
[11] S. L. Sobolev, Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, izd-vo LGU, Leningrad, 1950
[12] J. Serrin, “The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables”, Phil. Trans. Royal Soc. London, Ser. A, 264:1153 (1969), 413–496 | DOI | MR | Zbl
[13] K. Miranda, Uravneniya s chastnymi proizvodnymi ellipticheskogo tipa, IL, Moskva, 1957
[14] F. Frank, R. Mizes, Differentsialnye i integralnye uravneniya matematicheskoi fiziki, ONTI, Moskva, 1937