A Fourier series in an arbitrary bounded orthonormal system that diverges on a set of positive measure
Sbornik. Mathematics, Tome 27 (1975) no. 3, pp. 393-405 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that every system of collectively bounded orthonormal functions admits an integrable function whose Fourier series diverges on a set of positive measure. Bibliography: 6 titles.
@article{SM_1975_27_3_a5,
     author = {S. V. Bochkarev},
     title = {A~Fourier series in an arbitrary bounded orthonormal system that diverges on a~set of positive measure},
     journal = {Sbornik. Mathematics},
     pages = {393--405},
     year = {1975},
     volume = {27},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_27_3_a5/}
}
TY  - JOUR
AU  - S. V. Bochkarev
TI  - A Fourier series in an arbitrary bounded orthonormal system that diverges on a set of positive measure
JO  - Sbornik. Mathematics
PY  - 1975
SP  - 393
EP  - 405
VL  - 27
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1975_27_3_a5/
LA  - en
ID  - SM_1975_27_3_a5
ER  - 
%0 Journal Article
%A S. V. Bochkarev
%T A Fourier series in an arbitrary bounded orthonormal system that diverges on a set of positive measure
%J Sbornik. Mathematics
%D 1975
%P 393-405
%V 27
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1975_27_3_a5/
%G en
%F SM_1975_27_3_a5
S. V. Bochkarev. A Fourier series in an arbitrary bounded orthonormal system that diverges on a set of positive measure. Sbornik. Mathematics, Tome 27 (1975) no. 3, pp. 393-405. http://geodesic.mathdoc.fr/item/SM_1975_27_3_a5/

[2] A. Zigmund, Trigonometricheskie ryady, t. 1, izd-vo «Mir», Moskva, 1965 | MR

[3] R. Paley, “A remarkable system of orthogonal functions”, Proc. London Math. Soc., 34 (1932), 241–279 | DOI | Zbl

[4] S. V. Bochkarev, “Ob absolyutnoi skhodimosti ryadov Fure po ogranichennym polnym ortonormirovannym sistemam”, Matem. sb., 93 (134) (1974), 203–217 | Zbl

[5] S. V. Bochkarev, Klassy funktsii i koeffitsienty Fure po polnym ortonormirovannym sistemam, Doktorskaya dissertatsiya, Moskva, 1974

[6] A. M. Olevskii, “Ryady Fure i funktsii Lebega”, Uspekhi matem. nauk, XXII:2 (134) (1967), 237–239 | MR