A Fourier series in an arbitrary bounded orthonormal system that diverges on a set of positive measure
Sbornik. Mathematics, Tome 27 (1975) no. 3, pp. 393-405
Cet article a éte moissonné depuis la source Math-Net.Ru
It is shown that every system of collectively bounded orthonormal functions admits an integrable function whose Fourier series diverges on a set of positive measure. Bibliography: 6 titles.
@article{SM_1975_27_3_a5,
author = {S. V. Bochkarev},
title = {A~Fourier series in an arbitrary bounded orthonormal system that diverges on a~set of positive measure},
journal = {Sbornik. Mathematics},
pages = {393--405},
year = {1975},
volume = {27},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1975_27_3_a5/}
}
S. V. Bochkarev. A Fourier series in an arbitrary bounded orthonormal system that diverges on a set of positive measure. Sbornik. Mathematics, Tome 27 (1975) no. 3, pp. 393-405. http://geodesic.mathdoc.fr/item/SM_1975_27_3_a5/
[2] A. Zigmund, Trigonometricheskie ryady, t. 1, izd-vo «Mir», Moskva, 1965 | MR
[3] R. Paley, “A remarkable system of orthogonal functions”, Proc. London Math. Soc., 34 (1932), 241–279 | DOI | Zbl
[4] S. V. Bochkarev, “Ob absolyutnoi skhodimosti ryadov Fure po ogranichennym polnym ortonormirovannym sistemam”, Matem. sb., 93 (134) (1974), 203–217 | Zbl
[5] S. V. Bochkarev, Klassy funktsii i koeffitsienty Fure po polnym ortonormirovannym sistemam, Doktorskaya dissertatsiya, Moskva, 1974
[6] A. M. Olevskii, “Ryady Fure i funktsii Lebega”, Uspekhi matem. nauk, XXII:2 (134) (1967), 237–239 | MR