On the analytic continuation of holomorphic mappings
Sbornik. Mathematics, Tome 27 (1975) no. 3, pp. 375-392 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $D_1$ and $D_2$ be strictly pseudoconvex domains in $\mathbf C^n$ with real analytic boundaries $\partial D_1$ and $\partial D_2$, and let $\Omega$ be a neighborhood of the point $\zeta\in\partial D_1$ with $\Omega\cap\partial D_1$ connected. Assume that the mapping $f\colon\Omega\cap\overline D_1\to\mathbf C^n$ is holomorphic in $\Omega\cap D_1$, $C_1$ in $\Omega\cap\overline D_1$, and that $f(\Omega\cap\partial D_1)\subset\partial D_2$. The author proves that $f$ can be holomorphically continued to $\Omega\cap\partial D_1$. If the domain $D_2$ is a sphere $\{|z|<1\}$ and $\partial D_1$ is simply connected, then $f$ extends to a biholomorphic mapping from $D_1$ onto $D_2$. Bibliography: 12 titles.
@article{SM_1975_27_3_a4,
     author = {S. I. Pinchuk},
     title = {On~the analytic continuation of holomorphic mappings},
     journal = {Sbornik. Mathematics},
     pages = {375--392},
     year = {1975},
     volume = {27},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_27_3_a4/}
}
TY  - JOUR
AU  - S. I. Pinchuk
TI  - On the analytic continuation of holomorphic mappings
JO  - Sbornik. Mathematics
PY  - 1975
SP  - 375
EP  - 392
VL  - 27
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1975_27_3_a4/
LA  - en
ID  - SM_1975_27_3_a4
ER  - 
%0 Journal Article
%A S. I. Pinchuk
%T On the analytic continuation of holomorphic mappings
%J Sbornik. Mathematics
%D 1975
%P 375-392
%V 27
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1975_27_3_a4/
%G en
%F SM_1975_27_3_a4
S. I. Pinchuk. On the analytic continuation of holomorphic mappings. Sbornik. Mathematics, Tome 27 (1975) no. 3, pp. 375-392. http://geodesic.mathdoc.fr/item/SM_1975_27_3_a4/

[1] C. Fefferman, “The Bergman kernel and biholomorphic mappings of pseudoconvex domains”, Invent. Math., 26:1 (1974), 1–65 | DOI | MR | Zbl

[2] H. Alexander, “Holomorphic mappings from the ball and polydisc”, Math. Ann., 209:3 (1974), 249–256 | DOI | MR | Zbl

[3] B. S. Mityagin, G. M. Khenkin, “Lineinye zadachi kompleksnogo analiza”, Uspekhi matem. nauk, XXVI:4 (166) (1971), 93–153

[4] B. N. Khimchenko, “O povedenii supergarmonicheskoi funktsii vblizi granitsy tipa $A^1$”, Diff. uravneniya, 1:10 (1969), 1845–1853

[5] M. V. Keldysh, M. A. Lavrentev, “O edinstvennosti zadachi Neimana”, DAN SSSR, 16 (1937), 151–152

[6] S. I. Pinchuk, “O sobstvennykh golomorfnykh otobrazheniyakh strogo psevdovypuklykh oblastei”, Sib. matem. zh., 15:4 (1974), 909–917 | MR | Zbl

[7] L. Khermander, Vvedenie v teoriyu funktsii neskolkikh kompleksnykh peremennykh, izd-vo «Mir», Moskva, 1968 | MR

[8] S. Bokhner, U. Martin, Funktsii mnogikh kompleksnykh peremennykh, IL, Moskva, 1951

[9] B. V. Shabat, Vvedenie v kompleksnyi analiz, izd-vo «Nauka», Moskva, 1969 | MR

[10] W. Rothstein, “Ein neuer Beweis des Hartogsschen Hauptsatzes und seine Ausdehnung auf meromorphe Functionen”, Math. Z., 53:1 (1950), 84–95 | DOI | MR | Zbl

[11] J. Kajiwara, “On weak Poincare problem”, Nagoya Math. J., 29 (1967), 75–84 | MR | Zbl

[12] R. Ganning, Kh. Rossi, Analiticheskie funktsii neskolkikh kompleksnykh peremennykh, izd-vo «Mir», Moskva, 1968