Direct and converse theorems of Jackson type in $L^p$ spaces, $0$
Sbornik. Mathematics, Tome 27 (1975) no. 3, pp. 355-374

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the connection between properties of functions and best approximations in classical orthogonal systems is studied in the $L^p$-metric, $0$. Two-sided inequalities are established between moduli of continuity and best approximations in these systems, which are unimprovable in a well-defined sense. Inequalities between best approximations in various metrics are also presented. A number of results are generalized to the classes $\varphi(L)$. Bibliography: 23 titles.
@article{SM_1975_27_3_a3,
     author = {\`E. A. Storozhenko and V. G. Krotov and P. Oswald},
     title = {Direct and converse theorems of {Jackson} type in $L^p$ spaces, $0<p<1$},
     journal = {Sbornik. Mathematics},
     pages = {355--374},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_27_3_a3/}
}
TY  - JOUR
AU  - È. A. Storozhenko
AU  - V. G. Krotov
AU  - P. Oswald
TI  - Direct and converse theorems of Jackson type in $L^p$ spaces, $0
JO  - Sbornik. Mathematics
PY  - 1975
SP  - 355
EP  - 374
VL  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1975_27_3_a3/
LA  - en
ID  - SM_1975_27_3_a3
ER  - 
%0 Journal Article
%A È. A. Storozhenko
%A V. G. Krotov
%A P. Oswald
%T Direct and converse theorems of Jackson type in $L^p$ spaces, $0
%J Sbornik. Mathematics
%D 1975
%P 355-374
%V 27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1975_27_3_a3/
%G en
%F SM_1975_27_3_a3
È. A. Storozhenko; V. G. Krotov; P. Oswald. Direct and converse theorems of Jackson type in $L^p$ spaces, $0