. Two-sided inequalities are established between moduli of continuity and best approximations in these systems, which are unimprovable in a well-defined sense. Inequalities between best approximations in various metrics are also presented. A number of results are generalized to the classes $\varphi(L)$. Bibliography: 23 titles.
@article{SM_1975_27_3_a3,
author = {\`E. A. Storozhenko and V. G. Krotov and P. Oswald},
title = {Direct and converse theorems of {Jackson} type in $L^p$ spaces, $0<p<1$},
journal = {Sbornik. Mathematics},
pages = {355--374},
year = {1975},
volume = {27},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1975_27_3_a3/}
}
È. A. Storozhenko; V. G. Krotov; P. Oswald. Direct and converse theorems of Jackson type in $L^p$ spaces, $0
[1] N. Danford, Dzh. Shvarts, Lineinye operatory (obschaya teoriya), IL, Moskva, 1962
[2] A. Haar, “Zur Theorie der orthogonalen Funktionensysteme”, Math. Ann., 69 (1910), 331–371 | DOI | MR | Zbl
[3] P. L. Ulyanov, “O ryadakh po sisteme Khaara”, Matem. sb., 63(105) (1964), 356–391
[4] Z. Chiesielski, “Properties of the orthonormal Franclin system”, Studia Math., 27:3 (1966), 289–323 | MR
[5] B. Sz.-Nagy, “Approximation properties of orthogonal expansions”, Acta Sci. Math. Szeged, 15 (1953/54), 31–57 | MR
[6] B. I. Golubov, “O ryadakh Fure nepreryvnykh funktsii po sisteme Khaara”, Izv. AN SSSR, seriya matem., 28 (1964), 1271–1296 | MR | Zbl
[7] B. I. Golubov, “Nailuchshie priblizheniya v metrike $L^p$ polinomami Khaara i Uolsha”, Matem. sb., 87 (129) (1972), 254–274 | MR | Zbl
[8] E. P. Dolzhenko, “Ravnomernye approksimatsii ratsionalnymi funktsiyami (algebraicheskimi i trigonometricheskimi) i globalnye funktsionalnye svoistva”, DAN SSSR, 166:3 (1966), 526–529 | Zbl
[9] J. Z. Walsh, “A closed set of normal orthogonal functions”, Amer. J. Math., 45 (1923), 5–24 | DOI | MR | Zbl
[10] Ch. Watari, “Best approximation by Walsh polynomials”, Tôhoku Math. J., 15:1 (1963), 1–5 | DOI | MR
[11] A. F. Timan, Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, Moskva, 1960
[12] D. Jackson, Über Genauigkeit der Annäherung stetiger Funktionen ..., Diss., Göttingen, 1911
[13] S. B. Stechkin, “O poryadke nailuchshikh priblizhenii nepreryvnykh funktsii”, Izv. AN SSSR, seriya matem., 15:3 (1951), 219–242 | Zbl
[14] A. F. Timan, M. F. Timan, “Obobschennyi modul nepreryvnosti i nailuchshie priblizheniya v srednem”, DAN SSSR, 71:1 (1950), 17–20 | MR | Zbl
[15] E. A. Storozhenko, “Teoremy vlozheniya i nailuchshie priblizheniya”, Matem. sb., 97(139), 230–241 | Zbl
[16] A. L. Garkavi, “Teorema suschestvovaniya elementa nailuchshego priblizheniya v prostranstvakh tipa $(F)$ s integralnoi metrikoi”, Matem. zametki, 8:5 (1970), 583–594 | MR | Zbl
[17] A. A. Talalyan, “Predstavlenie funktsii klassov $L^p(0,1)$, $0
1$, ortogonalnymi ryadami”, Acta Math. Acad. Sci. Hung., 21:1–2 (1970), 1–9 | DOI | Zbl[18] P. L. Ulyanov, “Predstavlenie funktsii ryadami i klassy $\varphi(L)$”, Uspekhi matem. nauk, XXVII:2 (164) (1972), 3–52 | MR
[19] E. A. Storozhenko, “O nekotorykh teoremakh vlozheniya”, Matem. zametki, 19:2 (1976), 187–200 | MR | Zbl
[20] P. L. Ulyanov, “Vlozhenie nekotorykh klassov funktsii”, Izv. AN SSSR, seriya matem., 32 (1968), 649–686
[21] G. Khardi, D. Littlvud, G. Polia, Neravenstva, IL, Moskva, 1948
[22] P. L. Ulyanov, “Teoremy vlozheniya i sootnosheniya mezhdu nailuchshimi priblizheniyami (modulyami nepreryvnosti) v raznykh metrikakh”, Matem. sb., 81 (123) (1970), 104–131
[23] Yu. A. Brudnyi, “Priblizhenie tselymi funktsiyami na vneshnosti otrezka i poluosi”, DAN SSSR, 124:4 (1959), 739–742 | MR | Zbl