Direct and converse theorems of Jackson type in $L^p$ spaces, $0$
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 27 (1975) no. 3, pp. 355-374
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper the connection between properties of functions and best approximations in classical orthogonal systems is studied in the $L^p$-metric, $0$. Two-sided inequalities are established between moduli of continuity and best approximations in these systems, which are unimprovable in a well-defined sense. Inequalities between best approximations in various metrics are also presented. A number of results are generalized to the classes $\varphi(L)$.
Bibliography: 23 titles.
			
            
            
            
          
        
      @article{SM_1975_27_3_a3,
     author = {\`E. A. Storozhenko and V. G. Krotov and P. Oswald},
     title = {Direct and converse theorems of {Jackson} type in $L^p$ spaces, $0<p<1$},
     journal = {Sbornik. Mathematics},
     pages = {355--374},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_27_3_a3/}
}
                      
                      
                    TY - JOUR AU - È. A. Storozhenko AU - V. G. Krotov AU - P. Oswald TI - Direct and converse theorems of Jackson type in $L^p$ spaces, $0 JO - Sbornik. Mathematics PY - 1975 SP - 355 EP - 374 VL - 27 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1975_27_3_a3/ LA - en ID - SM_1975_27_3_a3 ER -
È. A. Storozhenko; V. G. Krotov; P. Oswald. Direct and converse theorems of Jackson type in $L^p$ spaces, $0
