On the density of solutions of an equation in $\mathbf{CP}^2$
Sbornik. Mathematics, Tome 27 (1975) no. 3, pp. 325-338 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we consider the system \begin{equation} \dot u=P(u), \end{equation} where $u=(u_0,u_1,u_2)\in\mathbf C^3$, $P=(P_0,P_1,P_2)$ and the $P_i$ are homogeneous polynomials of degree $2n$ ($n\geqslant1$) with complex coefficients. Let $A_n$ be the space of coefficients of the right-hand sides of the system (1). Any point $\alpha\in A_n$ defines a system of the form (1). Our aim in this paper is to show that the property of the solutions of the system (1) being dense in $\mathbf{CP}^2$ is locally characteristic, i.e. we prove that in $A_n$ there exists an open set $U$ such that the solutions of the system (1) with right-hand side $\alpha\in U$ are everywhere dense in $\mathbf{CP}^2$. This result can be extended without difficulty to the case in which the degree of the homogeneous polynomials appearing in the right-hand side of the system (1) is odd. Bibliography: 4 titles.
@article{SM_1975_27_3_a1,
     author = {B. M\"uller},
     title = {On~the density of solutions of an equation in~$\mathbf{CP}^2$},
     journal = {Sbornik. Mathematics},
     pages = {325--338},
     year = {1975},
     volume = {27},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_27_3_a1/}
}
TY  - JOUR
AU  - B. Müller
TI  - On the density of solutions of an equation in $\mathbf{CP}^2$
JO  - Sbornik. Mathematics
PY  - 1975
SP  - 325
EP  - 338
VL  - 27
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1975_27_3_a1/
LA  - en
ID  - SM_1975_27_3_a1
ER  - 
%0 Journal Article
%A B. Müller
%T On the density of solutions of an equation in $\mathbf{CP}^2$
%J Sbornik. Mathematics
%D 1975
%P 325-338
%V 27
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1975_27_3_a1/
%G en
%F SM_1975_27_3_a1
B. Müller. On the density of solutions of an equation in $\mathbf{CP}^2$. Sbornik. Mathematics, Tome 27 (1975) no. 3, pp. 325-338. http://geodesic.mathdoc.fr/item/SM_1975_27_3_a1/

[1] M. G. Khudai-Verenov, “Ob odnom svoistve reshenii odnogo differentsialnogo uravneniya”, Matem. sb., 56(98) (1962), 301–308 | MR

[2] I. G. Petrovskii, E. M. Landis, “O chisle predelnykh tsiklov uravneniya $\dfrac{dy}{dx}=\dfrac{P(x,y)}{Q(x,y)}$, gde $P$ i $Q$ – mnogochleny 2-i stepeni”, Matem. sb., 37(79):2 (1955), 209–250 | MR | Zbl

[3] Yu. S. Ilyashenko, “Vozniknovenie predelnykh tsiklov pri vozmuschenii uravneniya $\dfrac{dw}{dz}=-\dfrac{R_z}{R_w}$, gde $R(z,w)$ – mnogochlen”, Matem. sb., 78(120):3 (1969), 360–373 | MR | Zbl

[4] L. Bieberbach, Theorie der gewöhnlichen Differentialgleichungen, Springer, Berlin, 1953 | MR