On the density of solutions of an equation in $\mathbf{CP}^2$
Sbornik. Mathematics, Tome 27 (1975) no. 3, pp. 325-338
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we consider the system \begin{equation} \dot u=P(u), \end{equation} where $u=(u_0,u_1,u_2)\in\mathbf C^3$, $P=(P_0,P_1,P_2)$ and the $P_i$ are homogeneous polynomials of degree $2n$ ($n\geqslant1$) with complex coefficients. Let $A_n$ be the space of coefficients of the right-hand sides of the system (1). Any point $\alpha\in A_n$ defines a system of the form (1). Our aim in this paper is to show that the property of the solutions of the system (1) being dense in $\mathbf{CP}^2$ is locally characteristic, i.e. we prove that in $A_n$ there exists an open set $U$ such that the solutions of the system (1) with right-hand side $\alpha\in U$ are everywhere dense in $\mathbf{CP}^2$. This result can be extended without difficulty to the case in which the degree of the homogeneous polynomials appearing in the right-hand side of the system (1) is odd. Bibliography: 4 titles.
@article{SM_1975_27_3_a1,
author = {B. M\"uller},
title = {On~the density of solutions of an equation in~$\mathbf{CP}^2$},
journal = {Sbornik. Mathematics},
pages = {325--338},
year = {1975},
volume = {27},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1975_27_3_a1/}
}
B. Müller. On the density of solutions of an equation in $\mathbf{CP}^2$. Sbornik. Mathematics, Tome 27 (1975) no. 3, pp. 325-338. http://geodesic.mathdoc.fr/item/SM_1975_27_3_a1/
[1] M. G. Khudai-Verenov, “Ob odnom svoistve reshenii odnogo differentsialnogo uravneniya”, Matem. sb., 56(98) (1962), 301–308 | MR
[2] I. G. Petrovskii, E. M. Landis, “O chisle predelnykh tsiklov uravneniya $\dfrac{dy}{dx}=\dfrac{P(x,y)}{Q(x,y)}$, gde $P$ i $Q$ – mnogochleny 2-i stepeni”, Matem. sb., 37(79):2 (1955), 209–250 | MR | Zbl
[3] Yu. S. Ilyashenko, “Vozniknovenie predelnykh tsiklov pri vozmuschenii uravneniya $\dfrac{dw}{dz}=-\dfrac{R_z}{R_w}$, gde $R(z,w)$ – mnogochlen”, Matem. sb., 78(120):3 (1969), 360–373 | MR | Zbl
[4] L. Bieberbach, Theorie der gewöhnlichen Differentialgleichungen, Springer, Berlin, 1953 | MR