Homotopy of pseudosimplicial groups, nonabelian derived functors, and algebraic $K$-theory
Sbornik. Mathematics, Tome 27 (1975) no. 3, pp. 303-324 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using the homotopy groups of pseudosimplicial groups, we construct nonabelian derived functors with values in the category of groups. This enables us to obtain algebraic $K$-theory in the category of associative rings as the theory of left derived functors of the covariant functor $GL$. Bibliography: 20 titles.
@article{SM_1975_27_3_a0,
     author = {Kh. N. Inasaridze},
     title = {Homotopy of pseudosimplicial groups, nonabelian derived functors, and algebraic $K$-theory},
     journal = {Sbornik. Mathematics},
     pages = {303--324},
     year = {1975},
     volume = {27},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_27_3_a0/}
}
TY  - JOUR
AU  - Kh. N. Inasaridze
TI  - Homotopy of pseudosimplicial groups, nonabelian derived functors, and algebraic $K$-theory
JO  - Sbornik. Mathematics
PY  - 1975
SP  - 303
EP  - 324
VL  - 27
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1975_27_3_a0/
LA  - en
ID  - SM_1975_27_3_a0
ER  - 
%0 Journal Article
%A Kh. N. Inasaridze
%T Homotopy of pseudosimplicial groups, nonabelian derived functors, and algebraic $K$-theory
%J Sbornik. Mathematics
%D 1975
%P 303-324
%V 27
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1975_27_3_a0/
%G en
%F SM_1975_27_3_a0
Kh. N. Inasaridze. Homotopy of pseudosimplicial groups, nonabelian derived functors, and algebraic $K$-theory. Sbornik. Mathematics, Tome 27 (1975) no. 3, pp. 303-324. http://geodesic.mathdoc.fr/item/SM_1975_27_3_a0/

[1] H. Bass, Algebraic $K$-theory, Benjamin, New York, 1968 | MR | Zbl

[2] S. Eilenberg, J. Moore, “Foundations of relative homological algebra”, Mem. Amer. Math. Soc., 55 (1965), 1–39 | MR

[3] S. Eilenberg, J. Moore, “Adjoint functors and triples”, Illinois J. Math., 9 (1965), 381–398 | MR | Zbl

[4] S. M. Gersten, “Whitehead groups of free associative algebras”, Bull. Amer. Math. Soc., 71 (1965), 157–159 | DOI | MR | Zbl

[5] S. M. Gersten, “On the functor $K_2$, I”, J. Algebra, 17 (1971), 212–237 | DOI | MR | Zbl

[6] S. M. Gersten, “On Mayer-Vietoris functors and algebraic $K$-theory”, J. Algebra, 18 (1971), 51–88 | DOI | MR | Zbl

[7] Kh. N. Inasaridze, “Gomotopiya psevdo-simplitsialnykh grupp i neabelevy proizvodnye funktory”, Soobsch. AN GruzSSR, 76:3 (1974), 533–536 | MR | Zbl

[8] Kh. N. Inasaridze, “Ob algebraicheskikh $K$-funktorakh”, Soobsch. AN GruzSSR, 77:1 (1975), 17–20 | MR | Zbl

[9] M. Karoubi, O. Villamayor, “Foncteurs $K^n$ en algèbre et en topologie”, C. R. Acad. Sci. Paris, 269 (1969), 416–419 | MR | Zbl

[10] C. J. Knight, “Weak products of spaces and complexes”, Fundam. Math., 53:1 (1963), 1–12 | MR | Zbl

[11] J. P. May, Simplicial objects in algebraic topology, Van Nostrand, Princeton–New York, 1967 | MR

[12] J. Milnor, The construction $FK$, mimeographed, Princeton University, 1956

[13] J. Milnor, Notes on algebraic $K$-theory, mimeographed notes, M. I. T., Cambridge, Mass., 1969

[14] D. G. Quillen, “Spectral sequences of a double semi-simplicial group”, Topology, 5 (1966), 155–157 | DOI | MR | Zbl

[15] D. G. Quillen, “Cohomology of groups and algebraic $K$-theory”, Amer. Math. Soc. Winter Meeting, Atlantic City, New York, 1971

[16] R. G. Swan, Algebraic $K$-theory, Lecture Notes in Math., 76, Springer-Verlag, Berlin, 1968 | MR

[17] R. G. Swan, “Non-abelian homological algebra and $K$-theory”, Proc. Symp. Pure Math. (Amer. Math. Soc.), 17, 1970, 88–123 | MR | Zbl

[18] R. G. Swan, “Some relations between higher $K$-functors”, J. Algebra, 21 (1972), 113–136 | DOI | MR | Zbl

[19] M. Tierney, W. Vogel, “Simplicial resolutions and derived functors”, Math. Z., 111 (1969), 1–14 | DOI | MR

[20] I. A. Volodin, “Algebraicheskaya $K$-teoriya kak ekstraordinarnaya teoriya gomologii na kategorii assotsiativnykh kolets s edinitsei”, Izv. AN SSSR, seriya matem., 35 (1971), 844–873 | MR | Zbl