On conditions for the pluriharmonicity of the indicator of a holomorphic function of several variables
Sbornik. Mathematics, Tome 27 (1975) no. 2, pp. 289-301 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we consider holomorphic functions $f(z,w)$ defined in a domain $E_r\times T_\alpha$, where $E_r=\{z:|z| and $T_\alpha=\{w:|\arg w|<\alpha\}$; we obtain necessary and sufficient conditions for the pluriharmonicity of the indicator $$ h_f(z,w)=\varlimsup_{(z'w')\to(z,w)}\varlimsup_{t\to\infty}\frac{\ln|f(z',tw')|}{t^{\rho(t)}} $$ of $f(z,w)$ in $E_r\times T_\alpha$. We also obtain necessary and sufficient conditions for the pluriharmonicity of the indicator of a function $f(z)$ holomorphic in a cone. Bibliography: 6 titles.
@article{SM_1975_27_2_a9,
     author = {P. Z. Agranovich and L. I. Ronkin},
     title = {On~conditions for the pluriharmonicity of the indicator of a~holomorphic function of several variables},
     journal = {Sbornik. Mathematics},
     pages = {289--301},
     year = {1975},
     volume = {27},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_27_2_a9/}
}
TY  - JOUR
AU  - P. Z. Agranovich
AU  - L. I. Ronkin
TI  - On conditions for the pluriharmonicity of the indicator of a holomorphic function of several variables
JO  - Sbornik. Mathematics
PY  - 1975
SP  - 289
EP  - 301
VL  - 27
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1975_27_2_a9/
LA  - en
ID  - SM_1975_27_2_a9
ER  - 
%0 Journal Article
%A P. Z. Agranovich
%A L. I. Ronkin
%T On conditions for the pluriharmonicity of the indicator of a holomorphic function of several variables
%J Sbornik. Mathematics
%D 1975
%P 289-301
%V 27
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1975_27_2_a9/
%G en
%F SM_1975_27_2_a9
P. Z. Agranovich; L. I. Ronkin. On conditions for the pluriharmonicity of the indicator of a holomorphic function of several variables. Sbornik. Mathematics, Tome 27 (1975) no. 2, pp. 289-301. http://geodesic.mathdoc.fr/item/SM_1975_27_2_a9/

[1] L. Gruman, “Entire functions of several variables and their asymptotic growth”, Arkiv för math., 9:1 (1971), 141–163 | DOI | MR | Zbl

[2] B. Ya. Levin, Raspredelenie kornei tselykh funktsii, Gostekhizdat, Moskva, 1956

[3] Brelo, Osnovy klassicheskoi teorii potentsiala, izd-vo «Mir», Moskva, 1964 | MR

[4] N. S. Landkof, Osnovy sovremennoi teorii potentsiala, izd-vo «Nauka», Moskva, 1966 | MR

[5] L. I. Ronkin, Vvedenie v teoriyu tselykh funktsii mnogikh peremennykh, izd-vo «Nauka», Moskva, 1971 | MR

[6] P. Lelong, “Fonctions plurisousharmoniques et fonctions analytiques de variables réeles”, Ann. Inst. Fourier, 11 (1961), 516–562 | MR