Multidimensional piecewise polynomial approximation on classes of functions with a dominant mixed derivative
Sbornik. Mathematics, Tome 27 (1975) no. 2, pp. 269-288 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper is presented an $n$-parameter method of approximation, by piecewise polynomial functions, on classes $H_p^r$ of functions with a dominant mixed derivative. The method can be used to obtain a best possible estimate in the “power scale” of the $\varepsilon$-entropy of the class $H_p^r$ in the space $L_q$. Bibliography: 12 titles.
@article{SM_1975_27_2_a8,
     author = {V. E. Maiorov},
     title = {Multidimensional piecewise polynomial approximation on classes of functions with a~dominant mixed derivative},
     journal = {Sbornik. Mathematics},
     pages = {269--288},
     year = {1975},
     volume = {27},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_27_2_a8/}
}
TY  - JOUR
AU  - V. E. Maiorov
TI  - Multidimensional piecewise polynomial approximation on classes of functions with a dominant mixed derivative
JO  - Sbornik. Mathematics
PY  - 1975
SP  - 269
EP  - 288
VL  - 27
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1975_27_2_a8/
LA  - en
ID  - SM_1975_27_2_a8
ER  - 
%0 Journal Article
%A V. E. Maiorov
%T Multidimensional piecewise polynomial approximation on classes of functions with a dominant mixed derivative
%J Sbornik. Mathematics
%D 1975
%P 269-288
%V 27
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1975_27_2_a8/
%G en
%F SM_1975_27_2_a8
V. E. Maiorov. Multidimensional piecewise polynomial approximation on classes of functions with a dominant mixed derivative. Sbornik. Mathematics, Tome 27 (1975) no. 2, pp. 269-288. http://geodesic.mathdoc.fr/item/SM_1975_27_2_a8/

[1] N. S. Bakhvalov, “Teoremy vlozheniya dlya klassov funktsii s neskolkimi ogranichennymi proizvodnymi”, Vestnik MGU, seriya matem., mekhan., 1963, no. 3, 7–16 | Zbl

[2] N. S. Bakhvalov, “Otsenki snizu asimptoticheskikh kharakteristik klassov funktsii s dominiruyuschei smeshannoi proizvodnoi”, Matem. zametki, 12:6 (1972), 655–664 | Zbl

[3] M. Sh. Birman, M. Z. Solomyak, “Kusochno polinomialnye priblizheniya funktsii klassov $W_p^\alpha$”, Matem. sb., 73 (115) (1967), 331–355 | MR | Zbl

[4] V. V. Borzov, “O nekotorykh primeneniyakh kusochno polinomialnykh priblizhenii funktsii anizotropnykh klassov $W_p^r$”, DAN SSSR, 198:3 (1971), 499–501 | MR

[5] Ya. S. Bugrov, “Priblizhenie klassa funktsii s dominiruyuschei smeshannoi proizvodnoi”, Matem. sb., 64 (106) (1964), 410–418 | MR | Zbl

[6] A. N. Kolmogorov, V. M. Tikhomirov, “$\varepsilon$-entropiya i $\varepsilon$-emkost mnozhestv v funktsionalnykh prostranstvakh”, Uspekhi matem. nauk, XIV:2 (86) (1959), 3–86 | MR

[7] B. S. Mityagin, “Priblizhenie funktsii v prostranstve $L_p$ i $C$ na tore”, Matem. sb., 58 (100) (1962), 397–706

[8] N. S. Nikolskaya, “Priblizheniya differentsiruemykh funktsii mnogikh peremennykh summami Fure v metrike $L_p$”, DAN SSSR, 208:6 (1973), 1282–1285

[9] S. M. Nikolskii, “Funktsii s dominiruyuschei smeshannoi proizvodnoi, udovletvoryayuschei kratnomu usloviyu Geldera”, Sib. matem. zh., 4 (1963), 1342–1364 | MR

[10] S. M. Nikolskii, Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, izd-vo «Nauka», Moskva, 1969 | MR

[11] S. L. Sobolev, Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, izd-vo LGU, Leningrad, 1948

[12] N. M. Korobov, Teoretiko-chislovye metody v priblizhennom analize, Fizmatgiz, Moskva, 1963 | MR