A recursive construction of difference families in noncyclic groups
Sbornik. Mathematics, Tome 27 (1975) no. 2, pp. 251-261 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Recursive existence theorems are proved for $(v,k,\lambda)$-difference families in noncyclic groups, and it is deduced that there exist families in $G_1\times\dots\times G_\nu$, where $G_i=GF(p_i^{\alpha_i})$, with parameters $v=\prod_{i=1}^\nu p_i^{\alpha_i}$, $\lambda=k-1$ ($\lambda=k$), $k|(p_i^{\alpha_i}-1)$ $((k-1)|(p_i^{\alpha_i}-1))$, and also with $\lambda=\frac{k-1}2$ ($\lambda=\frac k2$), $p_i\ne2$. The existence of known difference families is used to deduce new difference families, that consist in anumber of cases of nonintersecting blocks. The existence theorems for $(v,k,\lambda)$-difference families in $G$ are existence theorems for BIB-designs $(v,k,\lambda)$ having $G$ as a regular group of automorphisms. Bibliography: 17 titles.
@article{SM_1975_27_2_a6,
     author = {B. T. Rumov},
     title = {A~recursive construction of difference families in noncyclic groups},
     journal = {Sbornik. Mathematics},
     pages = {251--261},
     year = {1975},
     volume = {27},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_27_2_a6/}
}
TY  - JOUR
AU  - B. T. Rumov
TI  - A recursive construction of difference families in noncyclic groups
JO  - Sbornik. Mathematics
PY  - 1975
SP  - 251
EP  - 261
VL  - 27
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1975_27_2_a6/
LA  - en
ID  - SM_1975_27_2_a6
ER  - 
%0 Journal Article
%A B. T. Rumov
%T A recursive construction of difference families in noncyclic groups
%J Sbornik. Mathematics
%D 1975
%P 251-261
%V 27
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1975_27_2_a6/
%G en
%F SM_1975_27_2_a6
B. T. Rumov. A recursive construction of difference families in noncyclic groups. Sbornik. Mathematics, Tome 27 (1975) no. 2, pp. 251-261. http://geodesic.mathdoc.fr/item/SM_1975_27_2_a6/

[1] R. M. Wilson, “Cyclotomy and difference families in elementary abelian groups”, J. Number Theory, 4 (1972), 17–47 | DOI | MR | Zbl

[2] M. Kholl, Kombinatorika, izd-vo «Mir», Moskva, 1970 | MR

[3] R. H. Bruck, “Difference sets in a finite group”, Trans. Amer. Math. Soc., 78 (1955), 464–481 | DOI | MR | Zbl

[4] R. L. McFarland, “A family of difference sets in non-cyclic groups”, J. Combin. Theory, 15 (1973), 1–10 | DOI | MR | Zbl

[5] R. C. Bose, “On the construction of balanced incomplete block designs”, Ann. Eugenics, 9 (1939), 353–399 | MR | Zbl

[6] D. A. Sprott, “A note of balanced incomplete block designs”, Canad. J. Math., 6:3 (1954), 341–346 | MR | Zbl

[7] H. Hanani, “The existence and construction of balanced incomplete block designs”, Ann. Math. Stat., 32:2 (1961), 361–386 | DOI | MR | Zbl

[8] K. N. Majindar, “On some methods of construction of B. I. B. designs”, Canad. J. Math., 20:4 (1968), 929–938 | MR | Zbl

[9] B. T. Rumov, “O postroenii blok-skhem iz elementov koltsa vychetov po sostavnomu modulyu”, Matem. zametki, 10:6 (1971), 649–659 | MR

[10] J. Wallis, “On supplementary difference sets”, Aequat. Math., 8 (1972), 242–257 | DOI | MR

[11] B. T. Rumov, “Ob odnom metode postroeniya obobschennykh raznostnykh mnozhestv”, Matem. zametki, 15:4 (1974), 551–560 | MR | Zbl

[12] K. N. Majindar, “An arithmetical difference systems with application to B. I. B. designs”, Canad. J. Math., 26:6 (1974), 1466–1474 | MR | Zbl

[13] H. Hanani, “On resolvable balanced incomplete block designs”, J. Combin. Theory, 17 (1974), 275–289 | DOI | MR | Zbl

[14] R. Peltesohn, “Eine Lösung der beiden heffiterschen Differenzenprobleme”, Compositio Math., 6 (1939), 251–257 | MR

[15] M. Hall, “Construction of block designs”, A survey of combinatorial theory, Amsterdam, 1973, 251–258 | MR | Zbl

[16] L. D. Baumert, Cyclic difference sets, Lectures Notes Math., 182, Springer-Verlag, Berlin, 1974 | MR

[17] M. Hall, “Difference sets”, Math. Centre Tracts, 57 (1974), 1–26 | MR