A~recursive construction of difference families in noncyclic groups
Sbornik. Mathematics, Tome 27 (1975) no. 2, pp. 251-261

Voir la notice de l'article provenant de la source Math-Net.Ru

Recursive existence theorems are proved for $(v,k,\lambda)$-difference families in noncyclic groups, and it is deduced that there exist families in $G_1\times\dots\times G_\nu$, where $G_i=GF(p_i^{\alpha_i})$, with parameters $v=\prod_{i=1}^\nu p_i^{\alpha_i}$, $\lambda=k-1$ ($\lambda=k$), $k|(p_i^{\alpha_i}-1)$ $((k-1)|(p_i^{\alpha_i}-1))$, and also with $\lambda=\frac{k-1}2$ ($\lambda=\frac k2$), $p_i\ne2$. The existence of known difference families is used to deduce new difference families, that consist in anumber of cases of nonintersecting blocks. The existence theorems for $(v,k,\lambda)$-difference families in $G$ are existence theorems for BIB-designs $(v,k,\lambda)$ having $G$ as a regular group of automorphisms. Bibliography: 17 titles.
@article{SM_1975_27_2_a6,
     author = {B. T. Rumov},
     title = {A~recursive construction of difference families in noncyclic groups},
     journal = {Sbornik. Mathematics},
     pages = {251--261},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_27_2_a6/}
}
TY  - JOUR
AU  - B. T. Rumov
TI  - A~recursive construction of difference families in noncyclic groups
JO  - Sbornik. Mathematics
PY  - 1975
SP  - 251
EP  - 261
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1975_27_2_a6/
LA  - en
ID  - SM_1975_27_2_a6
ER  - 
%0 Journal Article
%A B. T. Rumov
%T A~recursive construction of difference families in noncyclic groups
%J Sbornik. Mathematics
%D 1975
%P 251-261
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1975_27_2_a6/
%G en
%F SM_1975_27_2_a6
B. T. Rumov. A~recursive construction of difference families in noncyclic groups. Sbornik. Mathematics, Tome 27 (1975) no. 2, pp. 251-261. http://geodesic.mathdoc.fr/item/SM_1975_27_2_a6/