On rational approximations of functions with a convex derivative
Sbornik. Mathematics, Tome 27 (1975) no. 2, pp. 239-250 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that if $p\geqslant1$, and if the function $f(x)$ has a convex $p$th derivative for $x\in[a,b]$, then the least uniform deviation of $f$ from the rational functions of degree no higher than $n$ is bounded from above by the quantity $$ C(p,\nu)M(b-a)^pn^{-p-2}\overbrace{\ln\dots\ln}^{\nu\,\text{times}}n $$ where $\nu$ is a natural number and $C(p,\nu)$ depends only on $p$ and $\nu$, and where $M=\max|f^{(p)}(x)|$. There is an analogous estimate for $p=0$, provided that $f(x)$ is convex and $f\in{\operatorname{Lip}(\alpha)}$ for some $\alpha>0$. Bibliography: 10 titles.
@article{SM_1975_27_2_a5,
     author = {A. Khatamov},
     title = {On~rational approximations of functions with a~convex derivative},
     journal = {Sbornik. Mathematics},
     pages = {239--250},
     year = {1975},
     volume = {27},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_27_2_a5/}
}
TY  - JOUR
AU  - A. Khatamov
TI  - On rational approximations of functions with a convex derivative
JO  - Sbornik. Mathematics
PY  - 1975
SP  - 239
EP  - 250
VL  - 27
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1975_27_2_a5/
LA  - en
ID  - SM_1975_27_2_a5
ER  - 
%0 Journal Article
%A A. Khatamov
%T On rational approximations of functions with a convex derivative
%J Sbornik. Mathematics
%D 1975
%P 239-250
%V 27
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1975_27_2_a5/
%G en
%F SM_1975_27_2_a5
A. Khatamov. On rational approximations of functions with a convex derivative. Sbornik. Mathematics, Tome 27 (1975) no. 2, pp. 239-250. http://geodesic.mathdoc.fr/item/SM_1975_27_2_a5/

[1] P. Szüsz, P. Turan, “On the constructive theory of functions, I”, Publ. Math. Inst. Hung. Acad. Sci, 9 (1964), 495–502 | MR

[2] P. Szüsz, P. Turan, “On the constructive theory of functions, II”, Studia Sci. Math. Hung., 1 (1966), 65–69 | MR | Zbl

[3] G. Freud, “Über die Approximation reller Funktionen durch rationale gebrochene Funktionen”, Acta Math. Acad. Sci. Hung., 17 (1966), 313–324 | DOI | MR | Zbl

[4] V. A. Popov, “On the rational approximation of functions of the class $V_r$”, Acta Math. Acad. Sci. Hung., 25:1–2 (1974), 61–65 | DOI | MR | Zbl

[5] A. A. Abdugapparov, “O ratsionalnykh priblizheniyakh funktsii s vypukloi proizvodnoi”, DAN UzSSR, 1972, no. 10, 3–4 | MR | Zbl

[6] A. A. Abdugapparov, “O ratsionalnykh priblizheniyakh funktsii s vypukloi proizvodnoi”, Matem. sb., 93(135) (1974), 611–620 | MR | Zbl

[7] G. Freud, “On rational approximation of differentiable functions”, Studia Sci. Math. Hung., 5 (1970), 437–439 | MR

[8] A. P. Bulanov, “O poryadke priblizheniya vypuklykh funktsii ratsionalnymi funktsiyami”, Izv. AN SSSR, seriya matem., 33 (1969), 1132–1148 | MR | Zbl

[9] A. P. Bulanov, “Ratsionalnye priblizheniya vypuklykh funktsii s zadannym modulem nepreryvnosti”, Matem. sb., 84 (126) (1971), 476–494 | MR | Zbl

[10] V. A. Popov, J. Szabados, “On a general localization theorem and some applications in the theory of rational approximation”, Acta Math. Acad. Sci. Hung., 25:1–2 (1974), 165–170 | DOI | MR | Zbl