On~rational approximations of functions with a~convex derivative
Sbornik. Mathematics, Tome 27 (1975) no. 2, pp. 239-250

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that if $p\geqslant1$, and if the function $f(x)$ has a convex $p$th derivative for $x\in[a,b]$, then the least uniform deviation of $f$ from the rational functions of degree no higher than $n$ is bounded from above by the quantity $$ C(p,\nu)M(b-a)^pn^{-p-2}\overbrace{\ln\dots\ln}^{\nu\,\text{times}}n $$ where $\nu$ is a natural number and $C(p,\nu)$ depends only on $p$ and $\nu$, and where $M=\max|f^{(p)}(x)|$. There is an analogous estimate for $p=0$, provided that $f(x)$ is convex and $f\in{\operatorname{Lip}(\alpha)}$ for some $\alpha>0$. Bibliography: 10 titles.
@article{SM_1975_27_2_a5,
     author = {A. Khatamov},
     title = {On~rational approximations of functions with a~convex derivative},
     journal = {Sbornik. Mathematics},
     pages = {239--250},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_27_2_a5/}
}
TY  - JOUR
AU  - A. Khatamov
TI  - On~rational approximations of functions with a~convex derivative
JO  - Sbornik. Mathematics
PY  - 1975
SP  - 239
EP  - 250
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1975_27_2_a5/
LA  - en
ID  - SM_1975_27_2_a5
ER  - 
%0 Journal Article
%A A. Khatamov
%T On~rational approximations of functions with a~convex derivative
%J Sbornik. Mathematics
%D 1975
%P 239-250
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1975_27_2_a5/
%G en
%F SM_1975_27_2_a5
A. Khatamov. On~rational approximations of functions with a~convex derivative. Sbornik. Mathematics, Tome 27 (1975) no. 2, pp. 239-250. http://geodesic.mathdoc.fr/item/SM_1975_27_2_a5/