The Prym variety of a quble covering of a hyperelliptic curve with two branch points
Sbornik. Mathematics, Tome 27 (1975) no. 2, pp. 227-237 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article it is proved that the Prym variety of a double covering of a hyperelliptic curve with two branch points is a hyperelliptic Jacobian. The result obtained is used to describe the fiber of the Prym map from the moduli space of double covers of hyperelliptic curves with two branch points to the moduli space of Abelian varieties. Bibliography: 5 titles.
@article{SM_1975_27_2_a4,
     author = {S. G. Dalalyan},
     title = {The {Prym} variety of a~quble covering of a~hyperelliptic curve with two branch points},
     journal = {Sbornik. Mathematics},
     pages = {227--237},
     year = {1975},
     volume = {27},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_27_2_a4/}
}
TY  - JOUR
AU  - S. G. Dalalyan
TI  - The Prym variety of a quble covering of a hyperelliptic curve with two branch points
JO  - Sbornik. Mathematics
PY  - 1975
SP  - 227
EP  - 237
VL  - 27
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1975_27_2_a4/
LA  - en
ID  - SM_1975_27_2_a4
ER  - 
%0 Journal Article
%A S. G. Dalalyan
%T The Prym variety of a quble covering of a hyperelliptic curve with two branch points
%J Sbornik. Mathematics
%D 1975
%P 227-237
%V 27
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1975_27_2_a4/
%G en
%F SM_1975_27_2_a4
S. G. Dalalyan. The Prym variety of a quble covering of a hyperelliptic curve with two branch points. Sbornik. Mathematics, Tome 27 (1975) no. 2, pp. 227-237. http://geodesic.mathdoc.fr/item/SM_1975_27_2_a4/

[1] D. Mumford, “Prym Varieties, I”, Contributions to analysis, 1974 | MR

[2] Zh.-P. Serr, Algebraicheskie krivye i polya klassov, izd-vo «Mir», Moskva, 1968 | MR

[3] A. N. Tyurin, “Pyat lektsii o trekhmernykh mnogoobraziyakh”, Uspekhi matem. nauk, XXVII:5 (167) (1972), 3–50

[4] S. G. Dalalyan, “Mnogoobrazie Prima nerazvetvlennogo dvulistnogo nakrytiya giperellipticheskoi krivoi”, Uspekhi matem. nauk, XXIX:6 (180) (1974), 165–166

[5] H. M. Farkas, “Special divisors and analytic subloci of Teichmüller space”, Amer. J. Math., 88 (1966), 881–901 | DOI | MR