Wall groups of finite groups and $\Pi$-signatures of manifolds
Sbornik. Mathematics, Tome 27 (1975) no. 2, pp. 163-181

Voir la notice de l'article provenant de la source Math-Net.Ru

This article contains the evaluation of the image of the natural homomorphism $\chi$ from the even-dimensional Wall group $L_{2k}(\Pi)$ into the ring of complex representations of a finite group $\Pi$. The computations are carried out for finite groups acting freely and linearly on spheres, by means of a differential-topological interpretation of $\chi$; the Atiyah–Singer invariant is utilized as a tool. Bibliography: 8 titles.
@article{SM_1975_27_2_a1,
     author = {G. A. Kats},
     title = {Wall groups of finite groups and $\Pi$-signatures of manifolds},
     journal = {Sbornik. Mathematics},
     pages = {163--181},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_27_2_a1/}
}
TY  - JOUR
AU  - G. A. Kats
TI  - Wall groups of finite groups and $\Pi$-signatures of manifolds
JO  - Sbornik. Mathematics
PY  - 1975
SP  - 163
EP  - 181
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1975_27_2_a1/
LA  - en
ID  - SM_1975_27_2_a1
ER  - 
%0 Journal Article
%A G. A. Kats
%T Wall groups of finite groups and $\Pi$-signatures of manifolds
%J Sbornik. Mathematics
%D 1975
%P 163-181
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1975_27_2_a1/
%G en
%F SM_1975_27_2_a1
G. A. Kats. Wall groups of finite groups and $\Pi$-signatures of manifolds. Sbornik. Mathematics, Tome 27 (1975) no. 2, pp. 163-181. http://geodesic.mathdoc.fr/item/SM_1975_27_2_a1/