Sobolev spaces of infinite order and the behavior of solutions of some boundary value problems with unbounded increase of the order of the equation
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 27 (1975) no. 2, pp. 143-162
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In the study of the Cauchy–Dirichlet problem
\begin{gather}
L(u)\equiv\sum_{|\alpha|=0}^\infty(-1)^{|\alpha|}D^\alpha A_\alpha(x,\,D^\gamma u)=h(x),\qquad x\in G, \\
D^\omega u\mid_{\partial G}=0,\qquad |\omega|=0,1,\dots,
\end{gather}
infinite order Sobolev spaces
$$
\overset\circ W{}^\infty\{a_\alpha,\,p_\alpha\}\equiv\biggl\{u(x)\in C^\infty_0(G):\rho(u)\equiv\sum^\infty_{|\alpha|=0}a_\alpha\|D^\alpha u\|_{p_\alpha}^{p_\alpha}\infty\biggr\},
$$
naturally arise, where $a_\alpha\geqslant0$ and $p_\alpha\geqslant1$ are numerical sequences. In this paper criteria for the nontriviality of $\overset\circ W{}^\infty\{a_\alpha,p_\alpha\}$ are established and the problem (1), (2) is investigated. Further, a theorem is obtained on the existence of the limit (as $m\to\infty$) of solutions of nonlinear $2m$th order boundary value problems of elliptic and hyperbolic type, from which, in particular, follows the solvability of the mixed problem for the nonlinear hyperbolic equation $u''+L(u)=h(t,x)$, $t\in[0,T]$, where $T>0$ is arbitrary.
Bibliography: 9 titles.
			
            
            
            
          
        
      @article{SM_1975_27_2_a0,
     author = {Yu. A. Dubinskii},
     title = {Sobolev spaces of infinite order and the behavior of solutions of some boundary value problems with unbounded increase of the order of the equation},
     journal = {Sbornik. Mathematics},
     pages = {143--162},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_27_2_a0/}
}
                      
                      
                    TY - JOUR AU - Yu. A. Dubinskii TI - Sobolev spaces of infinite order and the behavior of solutions of some boundary value problems with unbounded increase of the order of the equation JO - Sbornik. Mathematics PY - 1975 SP - 143 EP - 162 VL - 27 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1975_27_2_a0/ LA - en ID - SM_1975_27_2_a0 ER -
%0 Journal Article %A Yu. A. Dubinskii %T Sobolev spaces of infinite order and the behavior of solutions of some boundary value problems with unbounded increase of the order of the equation %J Sbornik. Mathematics %D 1975 %P 143-162 %V 27 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1975_27_2_a0/ %G en %F SM_1975_27_2_a0
Yu. A. Dubinskii. Sobolev spaces of infinite order and the behavior of solutions of some boundary value problems with unbounded increase of the order of the equation. Sbornik. Mathematics, Tome 27 (1975) no. 2, pp. 143-162. http://geodesic.mathdoc.fr/item/SM_1975_27_2_a0/
