On infinitesimal bendings of troughs of revolution. I
Sbornik. Mathematics, Tome 27 (1975) no. 1, pp. 103-117 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that a trough of revolution possesses second-order rigidity with respect to $C^1$-smooth infinitesimal bendings. A necessary and sufficient condition is given for the existence of infinitesimal first-order bendings. Bibliography: 3 titles.
@article{SM_1975_27_1_a8,
     author = {I. Kh. Sabitov},
     title = {On~infinitesimal bendings of troughs of {revolution.~I}},
     journal = {Sbornik. Mathematics},
     pages = {103--117},
     year = {1975},
     volume = {27},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_27_1_a8/}
}
TY  - JOUR
AU  - I. Kh. Sabitov
TI  - On infinitesimal bendings of troughs of revolution. I
JO  - Sbornik. Mathematics
PY  - 1975
SP  - 103
EP  - 117
VL  - 27
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1975_27_1_a8/
LA  - en
ID  - SM_1975_27_1_a8
ER  - 
%0 Journal Article
%A I. Kh. Sabitov
%T On infinitesimal bendings of troughs of revolution. I
%J Sbornik. Mathematics
%D 1975
%P 103-117
%V 27
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1975_27_1_a8/
%G en
%F SM_1975_27_1_a8
I. Kh. Sabitov. On infinitesimal bendings of troughs of revolution. I. Sbornik. Mathematics, Tome 27 (1975) no. 1, pp. 103-117. http://geodesic.mathdoc.fr/item/SM_1975_27_1_a8/

[1] N. G. Perlova, I. Kh. Sabitov, “Zhestkost vtorogo poryadka zhelobov vrascheniya klassa $C^2$”, Vestnik MGU, Seriya matem. mekh., 1975, no. 5 | MR

[2] T. Minagawa, T. Rado, “On the infinitesimal rigidity of surfaces of revolution”, Math. Z., 59 (1953), 151–163 | DOI | MR | Zbl

[3] A. V. Pogorelov, Vneshnyaya geometriya vypuklykh poverkhnostei, izd-vo «Nauka», Moskva, 1969 | MR