On infinitesimal bendings of troughs of revolution. I
Sbornik. Mathematics, Tome 27 (1975) no. 1, pp. 103-117
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that a trough of revolution possesses second-order rigidity with respect to $C^1$-smooth infinitesimal bendings. A necessary and sufficient condition is given for the existence of infinitesimal first-order bendings. Bibliography: 3 titles.
@article{SM_1975_27_1_a8,
author = {I. Kh. Sabitov},
title = {On~infinitesimal bendings of troughs of {revolution.~I}},
journal = {Sbornik. Mathematics},
pages = {103--117},
year = {1975},
volume = {27},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1975_27_1_a8/}
}
I. Kh. Sabitov. On infinitesimal bendings of troughs of revolution. I. Sbornik. Mathematics, Tome 27 (1975) no. 1, pp. 103-117. http://geodesic.mathdoc.fr/item/SM_1975_27_1_a8/
[1] N. G. Perlova, I. Kh. Sabitov, “Zhestkost vtorogo poryadka zhelobov vrascheniya klassa $C^2$”, Vestnik MGU, Seriya matem. mekh., 1975, no. 5 | MR
[2] T. Minagawa, T. Rado, “On the infinitesimal rigidity of surfaces of revolution”, Math. Z., 59 (1953), 151–163 | DOI | MR | Zbl
[3] A. V. Pogorelov, Vneshnyaya geometriya vypuklykh poverkhnostei, izd-vo «Nauka», Moskva, 1969 | MR