A characterization of the spectrum of Hill's operator
Sbornik. Mathematics, Tome 26 (1975) no. 4, pp. 493-554 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article contains a complete derivation of necessary and sufficient conditions which a given sequence of intervals must satisfy in order that a Hill differential operator $L[y]=-y''+v(x)y$, with real, periodic potential $v(x)$, exist, whose spectrum coincides with this sequence of intervals. The proof is based on a specific representation of entire functions $u(z)$ such that the equation $u^2(z)=1$ has only real roots, conformal mappings having properties associated with this representation, and refined asymptotic formulas for the eigenvalues of certain boundary value problems. Figures: 4. Bibliography: 17 titles.
@article{SM_1975_26_4_a4,
     author = {V. A. Marchenko and I. V. Ostrovskii},
     title = {A~characterization of the spectrum of {Hill's} operator},
     journal = {Sbornik. Mathematics},
     pages = {493--554},
     year = {1975},
     volume = {26},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_26_4_a4/}
}
TY  - JOUR
AU  - V. A. Marchenko
AU  - I. V. Ostrovskii
TI  - A characterization of the spectrum of Hill's operator
JO  - Sbornik. Mathematics
PY  - 1975
SP  - 493
EP  - 554
VL  - 26
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1975_26_4_a4/
LA  - en
ID  - SM_1975_26_4_a4
ER  - 
%0 Journal Article
%A V. A. Marchenko
%A I. V. Ostrovskii
%T A characterization of the spectrum of Hill's operator
%J Sbornik. Mathematics
%D 1975
%P 493-554
%V 26
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1975_26_4_a4/
%G en
%F SM_1975_26_4_a4
V. A. Marchenko; I. V. Ostrovskii. A characterization of the spectrum of Hill's operator. Sbornik. Mathematics, Tome 26 (1975) no. 4, pp. 493-554. http://geodesic.mathdoc.fr/item/SM_1975_26_4_a4/

[1] I. V. Stankevich, “Ob odnoi obratnoi zadache spektralnogo analiza dlya uravneniya Khilla”, DAN SSSR, 192:1 (1970), 34–37 | Zbl

[2] M. G. Krein, “Ob obratnykh zadachakh teorii filtrov i $\lambda$-zon ustoichivosti”, DAN SSSR, 93:5 (1953), 767–770 | MR | Zbl

[3] M. G. Gasymov, B. M. Levitan, “Opredelenie differentsialnogo operatora po dvum spektram”, Uspekhi matem. nauk, XIX:2(116) (1964), 3–63 | MR

[4] V. A. Marchenko, “Periodicheskaya zadacha Kortevega–de Friza”, Matem. sb., 95(137) (1974), 331–356 | Zbl

[5] S. P. Novikov, “Periodicheskaya zadacha dlya uravneniya Kortevega–de Friza”, Funkts. analiz, 8:3 (1974), 54–66 | MR | Zbl

[6] A. R. Its, V. B. Matveev, “Operatory Shredingera s konechnozonnym spektrom i $N$-solitonnye resheniya uravneniya Kortevega–de Friza”, Teoretich. i matem. fizika, 23:1 (1975), 51–68 | MR

[7] B. A. Dubrovin, S. P. Novikov, “Periodicheskaya zadacha dlya uravnenii Kortevega–de Friza i Shturma–Liuvillya. Ikh svyaz s algebraicheskoi geometriei”, DAN SSSR, 219:3 (1974), 531–534 | MR | Zbl

[8] V. A. Marchenko, I. V. Ostrovskii, “Kharakteristika spektra operatora Khilla”, DAN SSSR, 222:6 (1975) | Zbl

[9] A. A. Goldberg, I. V. Ostrovskii, Raspredelenie znachenii meromorfnykh funktsii, Nauka, M., 1970 | MR

[10] E. Titchmarsh, Teoriya funktsii, Gostekhizdat, M., 1951

[11] B. Ya. Levin, Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956

[12] B. Ya. Levin, “Interpolyatsiya tselymi funktsiyami eksponentsialnogo tipa”, Trudy FTINT AN USSR, Matem. fizika i funkts. analiz, no. 1, 1969, 136–146

[13] B. Ya. Levin, Tselye funktsii, MGU, M., 1971

[14] K. Gofman, Banakhovy prostranstva analiticheskikh funktsii, IL, M., 1963

[15] N. I. Akhiezer, Klassicheskaya problema momentov, Fizmatgiz, M., 1961

[16] V. F. Lazutkin, T. F. Pankratova, “Asimptotika shiriny lakun v spektre operatora Shturma–Liuvillya s periodicheskim potentsialom”, DAN SSSR, 215:5 (1974), 1048–1051 | MR | Zbl

[17] V. A. Marchenko, Spektralnaya teoriya operatorov Shturma–Liuvillya, Naukova dumka, Kiev, 1972 | MR | Zbl