On local solvability of equations of quasi-principal type
Sbornik. Mathematics, Tome 26 (1975) no. 4, pp. 458-470 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The question of local solvability for a certain class of partial differential equations is considered. For this class a local parametrix is constructed , the points of singularity of the corresponding kernel of the integral operator are indicated, and the boundedness of the operator realizing the parametrix is demonstrated. Local solvability is then established on the basis of these results. Bibliography: 12 titles.
@article{SM_1975_26_4_a2,
     author = {N. A. Shananin},
     title = {On local solvability of equations of quasi-principal type},
     journal = {Sbornik. Mathematics},
     pages = {458--470},
     year = {1975},
     volume = {26},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_26_4_a2/}
}
TY  - JOUR
AU  - N. A. Shananin
TI  - On local solvability of equations of quasi-principal type
JO  - Sbornik. Mathematics
PY  - 1975
SP  - 458
EP  - 470
VL  - 26
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1975_26_4_a2/
LA  - en
ID  - SM_1975_26_4_a2
ER  - 
%0 Journal Article
%A N. A. Shananin
%T On local solvability of equations of quasi-principal type
%J Sbornik. Mathematics
%D 1975
%P 458-470
%V 26
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1975_26_4_a2/
%G en
%F SM_1975_26_4_a2
N. A. Shananin. On local solvability of equations of quasi-principal type. Sbornik. Mathematics, Tome 26 (1975) no. 4, pp. 458-470. http://geodesic.mathdoc.fr/item/SM_1975_26_4_a2/

[1] Yu. V. Egorov, “O razreshimosti differentsialnykh uravnenii s prostymi kharakteristikami”, Uspekhi matem. nauk, XXVI:2(158) (1971), 183–198 | MR | Zbl

[2] L. Khërmander, “Psevdodifferentsialnye operatory i gipoellipticheskie uravneniya”, Psevdodifferentsialnye operatory, Mir, M., 1967, 297–367 | MR

[3] L. R. Volevich, “Lokalnye svoistva neodnorodnykh psevdodifferentsialnykh operatorov”, Trudy mosk. matem. ob-va, XVI, 1967, 51–98

[4] Yu. V. Egorov, “Gipoellipticheskie psevdodifferentsialnye operatory”, Trudy mosk. matem. ob-va, XVI, 1967, 99–109

[5] V. V. Grushin, “Ob odnom klasse gipoellipticheskikh operatorov”, Matem. sb., 83(125) (1970), 456–473 | Zbl

[6] F. Treves, “Analitic-hypoelliptic partial differential equations of principal type”, Comm. Pure Appl. Math., 24 (1971), 537–570 | DOI | MR | Zbl

[7] F. Treves, “Hypoelliptic partial differential equations of principal type”, Comm. Pure Appl. Math., 24 (1971), 631–670 | DOI | MR | Zbl

[8] J. J. Duistermaat, L. Hörmander, “Fourier integrals operators, II”, Acta Math., 128 (1972), 183–269 | DOI | MR | Zbl

[9] V. P. Maslov, Operatornye metody, Nauka, M., 1973 | MR

[10] L. Khërmander, Lineinye differentsialnye operatory s chastnymi proizvodnymi, Mir, M., 1965 | MR

[11] L. Khërmander, “Integralnye operatory Fure, I”, Matematika, 16:1 (1972), 17–61 | Zbl

[12] V. V. Grushin, “Ob odnom klasse ellipticheskikh psevdodifferentsialnykh operatorov, vyrozhdayuschikhsya na podmnogoobrazii”, Matem. sb., 84(126) (1971), 163–195 | Zbl