On the representation of regular functions by Dirichlet series in a~closed disk
Sbornik. Mathematics, Tome 26 (1975) no. 4, pp. 449-457

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper it is shown that every function regular in a disk, whose second derivative satisfies a Lipschitz condition of order $\frac12+\alpha$ ($\alpha>0$) on the boundary of the disk, can be expanded as a Dirichlet series which is absolutely and uniformly convergent in the closed disk. Bibliography: 7 titles.
@article{SM_1975_26_4_a1,
     author = {Yu. I. Mel'nik},
     title = {On the representation of regular functions by {Dirichlet} series in a~closed disk},
     journal = {Sbornik. Mathematics},
     pages = {449--457},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_26_4_a1/}
}
TY  - JOUR
AU  - Yu. I. Mel'nik
TI  - On the representation of regular functions by Dirichlet series in a~closed disk
JO  - Sbornik. Mathematics
PY  - 1975
SP  - 449
EP  - 457
VL  - 26
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1975_26_4_a1/
LA  - en
ID  - SM_1975_26_4_a1
ER  - 
%0 Journal Article
%A Yu. I. Mel'nik
%T On the representation of regular functions by Dirichlet series in a~closed disk
%J Sbornik. Mathematics
%D 1975
%P 449-457
%V 26
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1975_26_4_a1/
%G en
%F SM_1975_26_4_a1
Yu. I. Mel'nik. On the representation of regular functions by Dirichlet series in a~closed disk. Sbornik. Mathematics, Tome 26 (1975) no. 4, pp. 449-457. http://geodesic.mathdoc.fr/item/SM_1975_26_4_a1/