On the behaviour for large values of the time of the solution of the Cauchy problem for the equation $\frac{\partial^2u}{\partial t^2}-\frac{\partial^2u}{\partial x^2}+\alpha(x)u=0$
Sbornik. Mathematics, Tome 26 (1975) no. 3, pp. 403-426
Cet article a éte moissonné depuis la source Math-Net.Ru
We obtain an asymptotic expansion as $t\to\infty$ for the solution $u(t,x)$ of the Cauchy problem with initial functions of compact support for the equation $$ u_{tt}-u_{xx}+(\alpha_0+\varphi(x))u=0,\qquad t>0,\quad-\infty<x<\infty, $$ where $\alpha_0=\text{const}$ and $\varphi(x)$ satisfies the following condition for some $k\geqslant1$: $$ \int_{-\infty}^\infty|x|^k|\varphi(x)|\,dx<\infty. $$ Bibliography: 4 titles.
@article{SM_1975_26_3_a6,
author = {S. A. Laptev},
title = {On~the behaviour for large values of the time of the solution of the {Cauchy} problem for the equation $\frac{\partial^2u}{\partial t^2}-\frac{\partial^2u}{\partial x^2}+\alpha(x)u=0$},
journal = {Sbornik. Mathematics},
pages = {403--426},
year = {1975},
volume = {26},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1975_26_3_a6/}
}
TY - JOUR
AU - S. A. Laptev
TI - On the behaviour for large values of the time of the solution of the Cauchy problem for the equation $\frac{\partial^2u}{\partial t^2}-\frac{\partial^2u}{\partial x^2}+\alpha(x)u=0$
JO - Sbornik. Mathematics
PY - 1975
SP - 403
EP - 426
VL - 26
IS - 3
UR - http://geodesic.mathdoc.fr/item/SM_1975_26_3_a6/
LA - en
ID - SM_1975_26_3_a6
ER -
%0 Journal Article
%A S. A. Laptev
%T On the behaviour for large values of the time of the solution of the Cauchy problem for the equation $\frac{\partial^2u}{\partial t^2}-\frac{\partial^2u}{\partial x^2}+\alpha(x)u=0$
%J Sbornik. Mathematics
%D 1975
%P 403-426
%V 26
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1975_26_3_a6/
%G en
%F SM_1975_26_3_a6
S. A. Laptev. On the behaviour for large values of the time of the solution of the Cauchy problem for the equation $\frac{\partial^2u}{\partial t^2}-\frac{\partial^2u}{\partial x^2}+\alpha(x)u=0$. Sbornik. Mathematics, Tome 26 (1975) no. 3, pp. 403-426. http://geodesic.mathdoc.fr/item/SM_1975_26_3_a6/
[1] R. Iost, Obschaya teoriya kvantovannykh polei, izd-vo «Mir», Moskva, 1967 | MR
[2] B. R. Vainberg, “Povedenie pri bolshikh vremenakh reshenii uravneniya Kleina-Gordona”, Trudy Mosk. matem. obschestva, XXX (1974), 139–158
[3] D. Thoe, “On the exponential decay of solutions of the wave equation”, J. Math. Analisis and Appl., 16:2 (1966), 333–346 | DOI | MR | Zbl
[4] V. A. Marchenko, Z. S. Agranovich, Obratnaya zadacha teorii rasseyaniya, Kharkov, 1960