On~the behaviour for large values of the time of the solution of the Cauchy problem for the equation $\frac{\partial^2u}{\partial t^2}-\frac{\partial^2u}{\partial x^2}+\alpha(x)u=0$
Sbornik. Mathematics, Tome 26 (1975) no. 3, pp. 403-426

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain an asymptotic expansion as $t\to\infty$ for the solution $u(t,x)$ of the Cauchy problem with initial functions of compact support for the equation $$ u_{tt}-u_{xx}+(\alpha_0+\varphi(x))u=0,\qquad t>0,\quad-\infty\infty, $$ where $\alpha_0=\text{const}$ and $\varphi(x)$ satisfies the following condition for some $k\geqslant1$: $$ \int_{-\infty}^\infty|x|^k|\varphi(x)|\,dx\infty. $$ Bibliography: 4 titles.
@article{SM_1975_26_3_a6,
     author = {S. A. Laptev},
     title = {On~the behaviour for large values of the time of the solution of the {Cauchy} problem for the equation $\frac{\partial^2u}{\partial t^2}-\frac{\partial^2u}{\partial x^2}+\alpha(x)u=0$},
     journal = {Sbornik. Mathematics},
     pages = {403--426},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_26_3_a6/}
}
TY  - JOUR
AU  - S. A. Laptev
TI  - On~the behaviour for large values of the time of the solution of the Cauchy problem for the equation $\frac{\partial^2u}{\partial t^2}-\frac{\partial^2u}{\partial x^2}+\alpha(x)u=0$
JO  - Sbornik. Mathematics
PY  - 1975
SP  - 403
EP  - 426
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1975_26_3_a6/
LA  - en
ID  - SM_1975_26_3_a6
ER  - 
%0 Journal Article
%A S. A. Laptev
%T On~the behaviour for large values of the time of the solution of the Cauchy problem for the equation $\frac{\partial^2u}{\partial t^2}-\frac{\partial^2u}{\partial x^2}+\alpha(x)u=0$
%J Sbornik. Mathematics
%D 1975
%P 403-426
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1975_26_3_a6/
%G en
%F SM_1975_26_3_a6
S. A. Laptev. On~the behaviour for large values of the time of the solution of the Cauchy problem for the equation $\frac{\partial^2u}{\partial t^2}-\frac{\partial^2u}{\partial x^2}+\alpha(x)u=0$. Sbornik. Mathematics, Tome 26 (1975) no. 3, pp. 403-426. http://geodesic.mathdoc.fr/item/SM_1975_26_3_a6/