Analytic continuation with respect to a~parameter of the Green's functions of exterior boundary value problems for the two-dimensional Helmholtz equation.~I
Sbornik. Mathematics, Tome 26 (1975) no. 3, pp. 373-402
Voir la notice de l'article provenant de la source Math-Net.Ru
In the first part of the paper one studies the distribution in the half-plane $\{\nu:|{\arg\nu}|\pi/2\}$ of the roots of the functions $H_\nu'(k)$ and $H_\nu'(k)+igH_\nu(k)$ and of the variable $\nu$ for arbitrary fixed complex $k$ from the region $K(\delta,\varkappa)=\{k:-\delta\arg k\pi/2-\delta,\ \varkappa|k|\}$ for some $\delta\in(0,\pi/2)$ and $\varkappa>0$, where $H_\nu(k)$ is the first Hankel function, $H_\nu'(k)$ is its derivative with respect to $k$, and $g$ is an arbitrary nonnegative number.
Figures: 4.
Bibliography: 10 titles.
@article{SM_1975_26_3_a5,
author = {L. A. Muravei},
title = {Analytic continuation with respect to a~parameter of the {Green's} functions of exterior boundary value problems for the two-dimensional {Helmholtz} {equation.~I}},
journal = {Sbornik. Mathematics},
pages = {373--402},
publisher = {mathdoc},
volume = {26},
number = {3},
year = {1975},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1975_26_3_a5/}
}
TY - JOUR AU - L. A. Muravei TI - Analytic continuation with respect to a~parameter of the Green's functions of exterior boundary value problems for the two-dimensional Helmholtz equation.~I JO - Sbornik. Mathematics PY - 1975 SP - 373 EP - 402 VL - 26 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1975_26_3_a5/ LA - en ID - SM_1975_26_3_a5 ER -
%0 Journal Article %A L. A. Muravei %T Analytic continuation with respect to a~parameter of the Green's functions of exterior boundary value problems for the two-dimensional Helmholtz equation.~I %J Sbornik. Mathematics %D 1975 %P 373-402 %V 26 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1975_26_3_a5/ %G en %F SM_1975_26_3_a5
L. A. Muravei. Analytic continuation with respect to a~parameter of the Green's functions of exterior boundary value problems for the two-dimensional Helmholtz equation.~I. Sbornik. Mathematics, Tome 26 (1975) no. 3, pp. 373-402. http://geodesic.mathdoc.fr/item/SM_1975_26_3_a5/