Analytic continuation with respect to a parameter of the Green's functions of exterior boundary value problems for the two-dimensional Helmholtz equation. I
Sbornik. Mathematics, Tome 26 (1975) no. 3, pp. 373-402 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the first part of the paper one studies the distribution in the half-plane $\{\nu:|{\arg\nu}|<\pi/2\}$ of the roots of the functions $H_\nu'(k)$ and $H_\nu'(k)+igH_\nu(k)$ and of the variable $\nu$ for arbitrary fixed complex $k$ from the region $K(\delta,\varkappa)=\{k:-\delta<\arg k<\pi/2-\delta,\ \varkappa<|k|\}$ for some $\delta\in(0,\pi/2)$ and $\varkappa>0$, where $H_\nu(k)$ is the first Hankel function, $H_\nu'(k)$ is its derivative with respect to $k$, and $g$ is an arbitrary nonnegative number. Figures: 4. Bibliography: 10 titles.
@article{SM_1975_26_3_a5,
     author = {L. A. Muravei},
     title = {Analytic continuation with respect to a~parameter of the {Green's} functions of exterior boundary value problems for the two-dimensional {Helmholtz} {equation.~I}},
     journal = {Sbornik. Mathematics},
     pages = {373--402},
     year = {1975},
     volume = {26},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_26_3_a5/}
}
TY  - JOUR
AU  - L. A. Muravei
TI  - Analytic continuation with respect to a parameter of the Green's functions of exterior boundary value problems for the two-dimensional Helmholtz equation. I
JO  - Sbornik. Mathematics
PY  - 1975
SP  - 373
EP  - 402
VL  - 26
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1975_26_3_a5/
LA  - en
ID  - SM_1975_26_3_a5
ER  - 
%0 Journal Article
%A L. A. Muravei
%T Analytic continuation with respect to a parameter of the Green's functions of exterior boundary value problems for the two-dimensional Helmholtz equation. I
%J Sbornik. Mathematics
%D 1975
%P 373-402
%V 26
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1975_26_3_a5/
%G en
%F SM_1975_26_3_a5
L. A. Muravei. Analytic continuation with respect to a parameter of the Green's functions of exterior boundary value problems for the two-dimensional Helmholtz equation. I. Sbornik. Mathematics, Tome 26 (1975) no. 3, pp. 373-402. http://geodesic.mathdoc.fr/item/SM_1975_26_3_a5/

[1] L. A. Muravei, “Ob analiticheskom prodolzhenii funktsii Grina vneshnikh kraevykh zadach dlya dvumernogo uravneniya Gelmgoltsa”, DAN SSSR, 220:1 (1975), 35–37 | MR | Zbl

[2] F. I. W. Ursell, “Short-wave asymptotic theory of the wave equation $(\nabla^2+k^2)=0$”, Proc. Cambridge Phil. Soc., 53 (1957), 115–133 | DOI | MR | Zbl

[3] V. M. Babich, “O korotkovolnovoi asimptotike funktsii Grina dlya uravneniya Gelmgoltsa”, Matem. sb., 65(107) (1964), 576–630 | Zbl

[4] R. Grimshaw, “High-frequency scattering by finite convex region”, Comm. Pure and Appl. Math., 19 (1966), 167–198 | DOI | MR | Zbl

[5] L. A. Muravei, “Asimptoticheskoe povedenie pri bolshikh znacheniyakh vremeni reshenii vtoroi i tretei vneshnikh kraevykh zadach dlya volnovogo uravneniya s dvumya prostranstvennymi peremennymi”, Trudy Matem. in-ta im. V. A. Steklova, CXXVI (1973), 73–144 | MR

[6] F. W. J. Olver, “The asymptotic solution of linear differential equation of the second order for large values of a parameter”, Phil. Trans. Roy. Soc. London, 247 (1954), 307–369 | DOI | MR

[7] G. N. Vatson, Teoriya besselevykh funktsii, IL, Moskva, 1949

[8] V. P. Mikhailov, “O kornyakh funktsii Makdonalda”, Trudy Matem. in-ta im. V. A. Steklova, CIII (1968), 162–171

[9] A. Erdelyi, W. O. Kermack, “Note on the equation $f(z)K_n'(z)-g(z)K_n(z)$”, Proc. Cambridge Phil. Soc., 41 (1954), 74–75 | DOI | MR

[10] L. A. Muravei, “O kornyakh funktsii $Ai'(z)-\sigma Ai(z)$”, Diff. uravneniya, 11:6 (1975), 1054–1077 | MR | Zbl