Analytic continuation with respect to a~parameter of the Green's functions of exterior boundary value problems for the two-dimensional Helmholtz equation.~I
Sbornik. Mathematics, Tome 26 (1975) no. 3, pp. 373-402

Voir la notice de l'article provenant de la source Math-Net.Ru

In the first part of the paper one studies the distribution in the half-plane $\{\nu:|{\arg\nu}|\pi/2\}$ of the roots of the functions $H_\nu'(k)$ and $H_\nu'(k)+igH_\nu(k)$ and of the variable $\nu$ for arbitrary fixed complex $k$ from the region $K(\delta,\varkappa)=\{k:-\delta\arg k\pi/2-\delta,\ \varkappa|k|\}$ for some $\delta\in(0,\pi/2)$ and $\varkappa>0$, where $H_\nu(k)$ is the first Hankel function, $H_\nu'(k)$ is its derivative with respect to $k$, and $g$ is an arbitrary nonnegative number. Figures: 4. Bibliography: 10 titles.
@article{SM_1975_26_3_a5,
     author = {L. A. Muravei},
     title = {Analytic continuation with respect to a~parameter of the {Green's} functions of exterior boundary value problems for the two-dimensional {Helmholtz} {equation.~I}},
     journal = {Sbornik. Mathematics},
     pages = {373--402},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_26_3_a5/}
}
TY  - JOUR
AU  - L. A. Muravei
TI  - Analytic continuation with respect to a~parameter of the Green's functions of exterior boundary value problems for the two-dimensional Helmholtz equation.~I
JO  - Sbornik. Mathematics
PY  - 1975
SP  - 373
EP  - 402
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1975_26_3_a5/
LA  - en
ID  - SM_1975_26_3_a5
ER  - 
%0 Journal Article
%A L. A. Muravei
%T Analytic continuation with respect to a~parameter of the Green's functions of exterior boundary value problems for the two-dimensional Helmholtz equation.~I
%J Sbornik. Mathematics
%D 1975
%P 373-402
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1975_26_3_a5/
%G en
%F SM_1975_26_3_a5
L. A. Muravei. Analytic continuation with respect to a~parameter of the Green's functions of exterior boundary value problems for the two-dimensional Helmholtz equation.~I. Sbornik. Mathematics, Tome 26 (1975) no. 3, pp. 373-402. http://geodesic.mathdoc.fr/item/SM_1975_26_3_a5/