Systems of distinct representatives for random sets
Sbornik. Mathematics, Tome 26 (1975) no. 3, pp. 365-371 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this work estimates from below are obtained for the probability that the permanent of a random $n\times m$ $(0,1)$-matrix is positive. Using this estimate, it is shown that a random collection of subsets $X_1,\dots,X_n$ of the set $X$ of $m$ elements as $m\to\infty$ has a system of distinct representatives with probability close to one. Bibliography: 3 titles.
@article{SM_1975_26_3_a4,
     author = {V. N. Sachkov},
     title = {Systems of distinct representatives for random sets},
     journal = {Sbornik. Mathematics},
     pages = {365--371},
     year = {1975},
     volume = {26},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_26_3_a4/}
}
TY  - JOUR
AU  - V. N. Sachkov
TI  - Systems of distinct representatives for random sets
JO  - Sbornik. Mathematics
PY  - 1975
SP  - 365
EP  - 371
VL  - 26
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1975_26_3_a4/
LA  - en
ID  - SM_1975_26_3_a4
ER  - 
%0 Journal Article
%A V. N. Sachkov
%T Systems of distinct representatives for random sets
%J Sbornik. Mathematics
%D 1975
%P 365-371
%V 26
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1975_26_3_a4/
%G en
%F SM_1975_26_3_a4
V. N. Sachkov. Systems of distinct representatives for random sets. Sbornik. Mathematics, Tome 26 (1975) no. 3, pp. 365-371. http://geodesic.mathdoc.fr/item/SM_1975_26_3_a4/

[1] G. Dzh. Raizer, Kombinatornaya matematika, izd-vo «Mir», Moskva, 1966

[2] M. Kholl, Kombinatorika, izd-vo «Mir», Moskva, 1970 | MR

[3] C. I. Everett, P. R. Stein, “The asymptotic number of $(0,1)$-matrices with zero permanent”, Discrete Math., 6 (1973), 29–34 | DOI | MR | Zbl