On~a~sharp Liouville theorem for solutions of~a~parabolic equation on~a~characteristic
Sbornik. Mathematics, Tome 26 (1975) no. 3, pp. 349-364
Voir la notice de l'article provenant de la source Math-Net.Ru
The equation $u_t=Lu+c(x)$ is considered in the strip $0$. The operator
$L=\sum_{i,j=1}^n\frac\partial{\partial x_i}\bigl(a_{ij}(x)\frac\partial{\partial x_j}\bigr)$
is a selfadjoint uniformly elliptic operator of second order, $a_{ij}\in C^2(\mathbf R^n)$, $c\in C^1(\mathbf R^n)$, $|D^\beta a_{ij}(x)|=o(|x|^{-|\beta|})$, $|\beta|=1,2$, and $|c(x)|=o(|x|^{-2})$. For a solution $u$ of this equation the following assertions are proved: if $|u(t,x)|=O(\exp\varphi(|x|))$ ($\varphi(r)\geqslant r^{2+\varepsilon}$ is an arbitrary increasing function of one variable) uniformly in $t$ and if in some cone on the characteristic $t=T$ we have $|u(T,x)|=O(\exp(-C\varphi(C'|x|)))$ ($C$ and $C'$ are constants which depend on the equation and the vertex angle of the cone), then $u(T,x)\equiv0$; if $u(T,x)|=O(\exp K|x|^2)$ and if in the cone we have $|u(T,x)|=O(\exp(-C(K+1/T)|x|^2))$
then $u(t,x)\equiv0$.
Bibliography: 11 titles.
@article{SM_1975_26_3_a3,
author = {A. L. Gusarov},
title = {On~a~sharp {Liouville} theorem for solutions of~a~parabolic equation on~a~characteristic},
journal = {Sbornik. Mathematics},
pages = {349--364},
publisher = {mathdoc},
volume = {26},
number = {3},
year = {1975},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1975_26_3_a3/}
}
A. L. Gusarov. On~a~sharp Liouville theorem for solutions of~a~parabolic equation on~a~characteristic. Sbornik. Mathematics, Tome 26 (1975) no. 3, pp. 349-364. http://geodesic.mathdoc.fr/item/SM_1975_26_3_a3/