Properties of Riemann sums for functions representable by a~trigonometric series with monotone coefficients
Sbornik. Mathematics, Tome 26 (1975) no. 3, pp. 331-347
Voir la notice de l'article provenant de la source Math-Net.Ru
We study properties of Riemann sums
$$
R_n(\varphi,a)=\frac{2\pi}n\sum_{k=0}^{n-1}\varphi\biggl(2\pi\frac{k+a}n\biggr),\qquad0\leqslant a\leqslant1,
$$
for functions representable as the sum of a trigonometric series with monotone (or convex) coefficients. We consider two basic problems: 1) the connection between the behavior of these sums and the rate of decrease of the coefficients of the series; 2) the limit properties of the ratio of a coefficient of the series, considered as an integral, to a corresponding Riemann sum of higher order.
Bibliography: 4 titles.
@article{SM_1975_26_3_a2,
author = {A. Yu. Petrovich},
title = {Properties of {Riemann} sums for functions representable by a~trigonometric series with monotone coefficients},
journal = {Sbornik. Mathematics},
pages = {331--347},
publisher = {mathdoc},
volume = {26},
number = {3},
year = {1975},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1975_26_3_a2/}
}
TY - JOUR AU - A. Yu. Petrovich TI - Properties of Riemann sums for functions representable by a~trigonometric series with monotone coefficients JO - Sbornik. Mathematics PY - 1975 SP - 331 EP - 347 VL - 26 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1975_26_3_a2/ LA - en ID - SM_1975_26_3_a2 ER -
A. Yu. Petrovich. Properties of Riemann sums for functions representable by a~trigonometric series with monotone coefficients. Sbornik. Mathematics, Tome 26 (1975) no. 3, pp. 331-347. http://geodesic.mathdoc.fr/item/SM_1975_26_3_a2/