Finite groups whose Sylow 2-subgroups have cyclic commutator subgroups
Sbornik. Mathematics, Tome 26 (1975) no. 3, pp. 295-311

Voir la notice de l'article provenant de la source Math-Net.Ru

The following theorem is proved. Theorem. {\it Suppose $G$ is a finite group such that $O^2(G)=G$ and $O_{2',2}(G)=O(G)$. Assume that a Sylow $2$-subgroup $T$ of $G$ is the direct product of subgroups $W$ and $A$, where $A$ is elementary Abelian and $W$ is non-Abelian dihedral, semidihedral, or wreathed. Then $T$ contains subgroups $W^*$ and $A^*$ with the following properties: $1)\ T=W^*\times A^*;$ $2)\ W\cong W^*,$ and all involutions of $W^*$ are conjugate in $G;$ $3)\ A\cong A^*,$ and $A^*$ is strongly closed in $T$ $($with respect to $G)$.} As a consequence, a description is given of the finite groups whose Sylow 2-subgroups have cyclic commutator subgroups, the simple ones among which are the following: 1) $PSL_2(q)$, where $q\geqslant4$; 2) $PSL_3(q)$ and $PSU_3(q)$, where $q$ is odd; 3) $A_7$, $M_{11}$, the Janko group $J_1$, and the Ree groups. Bibliography: 12 titles.
@article{SM_1975_26_3_a0,
     author = {R. Zh. Aleev},
     title = {Finite groups whose {Sylow} 2-subgroups have cyclic commutator subgroups},
     journal = {Sbornik. Mathematics},
     pages = {295--311},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_26_3_a0/}
}
TY  - JOUR
AU  - R. Zh. Aleev
TI  - Finite groups whose Sylow 2-subgroups have cyclic commutator subgroups
JO  - Sbornik. Mathematics
PY  - 1975
SP  - 295
EP  - 311
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1975_26_3_a0/
LA  - en
ID  - SM_1975_26_3_a0
ER  - 
%0 Journal Article
%A R. Zh. Aleev
%T Finite groups whose Sylow 2-subgroups have cyclic commutator subgroups
%J Sbornik. Mathematics
%D 1975
%P 295-311
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1975_26_3_a0/
%G en
%F SM_1975_26_3_a0
R. Zh. Aleev. Finite groups whose Sylow 2-subgroups have cyclic commutator subgroups. Sbornik. Mathematics, Tome 26 (1975) no. 3, pp. 295-311. http://geodesic.mathdoc.fr/item/SM_1975_26_3_a0/