Finite groups whose Sylow 2-subgroups have cyclic commutator subgroups
Sbornik. Mathematics, Tome 26 (1975) no. 3, pp. 295-311 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The following theorem is proved. Theorem. {\it Suppose $G$ is a finite group such that $O^2(G)=G$ and $O_{2',2}(G)=O(G)$. Assume that a Sylow $2$-subgroup $T$ of $G$ is the direct product of subgroups $W$ and $A$, where $A$ is elementary Abelian and $W$ is non-Abelian dihedral, semidihedral, or wreathed. Then $T$ contains subgroups $W^*$ and $A^*$ with the following properties: $1)\ T=W^*\times A^*;$ $2)\ W\cong W^*,$ and all involutions of $W^*$ are conjugate in $G;$ $3)\ A\cong A^*,$ and $A^*$ is strongly closed in $T$ $($with respect to $G)$.} As a consequence, a description is given of the finite groups whose Sylow 2-subgroups have cyclic commutator subgroups, the simple ones among which are the following: 1) $PSL_2(q)$, where $q\geqslant4$; 2) $PSL_3(q)$ and $PSU_3(q)$, where $q$ is odd; 3) $A_7$, $M_{11}$, the Janko group $J_1$, and the Ree groups. Bibliography: 12 titles.
@article{SM_1975_26_3_a0,
     author = {R. Zh. Aleev},
     title = {Finite groups whose {Sylow} 2-subgroups have cyclic commutator subgroups},
     journal = {Sbornik. Mathematics},
     pages = {295--311},
     year = {1975},
     volume = {26},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_26_3_a0/}
}
TY  - JOUR
AU  - R. Zh. Aleev
TI  - Finite groups whose Sylow 2-subgroups have cyclic commutator subgroups
JO  - Sbornik. Mathematics
PY  - 1975
SP  - 295
EP  - 311
VL  - 26
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1975_26_3_a0/
LA  - en
ID  - SM_1975_26_3_a0
ER  - 
%0 Journal Article
%A R. Zh. Aleev
%T Finite groups whose Sylow 2-subgroups have cyclic commutator subgroups
%J Sbornik. Mathematics
%D 1975
%P 295-311
%V 26
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1975_26_3_a0/
%G en
%F SM_1975_26_3_a0
R. Zh. Aleev. Finite groups whose Sylow 2-subgroups have cyclic commutator subgroups. Sbornik. Mathematics, Tome 26 (1975) no. 3, pp. 295-311. http://geodesic.mathdoc.fr/item/SM_1975_26_3_a0/

[1] J. Alperin, R. Brauer, D. Gorenstein, “Finite simple groups of 2-rank two”, Scr. Math., 29:3–4 (1973), 191–214 | MR | Zbl

[2] P. Chabot, “Groups whose Sylow 2-groups have cyclic commutator groups”, J. Algebra, 19:1 (1971), 21–30 ; 1 (1972), 312–320 | DOI | MR | Zbl | DOI | Zbl

[3] G. Glauberman, “Central elements in core-free groups”, J. Algebra, 4:3 (1966), 403–420 | DOI | MR | Zbl

[4] G. Glauberman, “A sufficient condition for $p$-stability”, Proc. London Math. Soc., 25:2 (1972), 253–287 | DOI | MR | Zbl

[5] D. M. Goldschmidt, “2-fusion in finite groups”, Ann. Math., 99:1 (1974), 70–117 | DOI | MR | Zbl

[6] D. Gorenstein, Finite groups, Harper and Row, 1968 | MR | Zbl

[7] D. Gorenstein, K. Harada, “Finite groups whose Sylow 2-subgroups are the direct product of two dihedral groups”, Ann. Math., 95:1 (1972), 1–54 | DOI | MR | Zbl

[8] D. Gorenstein, J. H. Walter, “The characterization of finite groups with dihedral Sylow 2-subgroups”, J. Algebra, 2:1 (1965), 85–151 ; 2:2, 218–270 ; 2:3, 354–393 | DOI | MR | Zbl | DOI | MR | DOI | MR | Zbl

[9] K. Harada, “Groups with a certain type of Sylow 2-subgroups”, J. Math. Soc. Japan, 19:3 (1967), 303–307 | MR | Zbl

[10] F. L. Smith, “Finite groups whose Sylow 2-subgroups are the direct product of a dihedral and a semidihedral subgroups”, Illinois J. Math., 17:3 (1973), 352–386 | MR | Zbl

[11] J. H. Walter, “The characterization of finite groups with abelian Sylow 2-subgroups”, Ann. Math., 89:3 (1969), 405–514 | DOI | MR | Zbl

[12] S. Tchounikhin, “Über einige Sätze der Gruppentheorie”, Math. Ann., 112 (1935), 92–94 | DOI | MR | Zbl