@article{SM_1975_26_3_a0,
author = {R. Zh. Aleev},
title = {Finite groups whose {Sylow} 2-subgroups have cyclic commutator subgroups},
journal = {Sbornik. Mathematics},
pages = {295--311},
year = {1975},
volume = {26},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1975_26_3_a0/}
}
R. Zh. Aleev. Finite groups whose Sylow 2-subgroups have cyclic commutator subgroups. Sbornik. Mathematics, Tome 26 (1975) no. 3, pp. 295-311. http://geodesic.mathdoc.fr/item/SM_1975_26_3_a0/
[1] J. Alperin, R. Brauer, D. Gorenstein, “Finite simple groups of 2-rank two”, Scr. Math., 29:3–4 (1973), 191–214 | MR | Zbl
[2] P. Chabot, “Groups whose Sylow 2-groups have cyclic commutator groups”, J. Algebra, 19:1 (1971), 21–30 ; 1 (1972), 312–320 | DOI | MR | Zbl | DOI | Zbl
[3] G. Glauberman, “Central elements in core-free groups”, J. Algebra, 4:3 (1966), 403–420 | DOI | MR | Zbl
[4] G. Glauberman, “A sufficient condition for $p$-stability”, Proc. London Math. Soc., 25:2 (1972), 253–287 | DOI | MR | Zbl
[5] D. M. Goldschmidt, “2-fusion in finite groups”, Ann. Math., 99:1 (1974), 70–117 | DOI | MR | Zbl
[6] D. Gorenstein, Finite groups, Harper and Row, 1968 | MR | Zbl
[7] D. Gorenstein, K. Harada, “Finite groups whose Sylow 2-subgroups are the direct product of two dihedral groups”, Ann. Math., 95:1 (1972), 1–54 | DOI | MR | Zbl
[8] D. Gorenstein, J. H. Walter, “The characterization of finite groups with dihedral Sylow 2-subgroups”, J. Algebra, 2:1 (1965), 85–151 ; 2:2, 218–270 ; 2:3, 354–393 | DOI | MR | Zbl | DOI | MR | DOI | MR | Zbl
[9] K. Harada, “Groups with a certain type of Sylow 2-subgroups”, J. Math. Soc. Japan, 19:3 (1967), 303–307 | MR | Zbl
[10] F. L. Smith, “Finite groups whose Sylow 2-subgroups are the direct product of a dihedral and a semidihedral subgroups”, Illinois J. Math., 17:3 (1973), 352–386 | MR | Zbl
[11] J. H. Walter, “The characterization of finite groups with abelian Sylow 2-subgroups”, Ann. Math., 89:3 (1969), 405–514 | DOI | MR | Zbl
[12] S. Tchounikhin, “Über einige Sätze der Gruppentheorie”, Math. Ann., 112 (1935), 92–94 | DOI | MR | Zbl