On the approximation of functions of several complex variables on fat compact subsets of $\mathbf C^n$ by polynomials
Sbornik. Mathematics, Tome 26 (1975) no. 2, pp. 260-279 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a compact set $J\subset\mathbf C^n$, we denote by $P(J)$ the algebra of all functions on $J$ which can be approximated uniformly (on $J$) by polynomials in $n$ complex variables, and by $A(J)$ the algebra of all continuous functions on $J$ which are analytic at the interior points of $J$. We shall say that $J$ is fat if it is the closure of an open set. In this paper, we consider the problem of approximating functions of several complex variables on fat compact sets with connected interior by polynomials. We prove the following theorems. Theorem 1. There exists a fat polynomially convex $($holomorphically$)$ contractible compact subset $J$ of $\mathbf C^2$ whose interior is homeomorphic to the four-dimensional open ball and such that $P(J)\ne A(J)$. Theorem 2. There exists a fat polynomially convex contractible compact subset $J$ of $\mathbf C^3$ whose interior is homeomorphic to the six-dimensional open ball and such that $P(J)\ne A(J)$, although the minimal boundaries of the algebras $P(J)$ and $A(J)$ coincide. Bibliography: 15 titles.
@article{SM_1975_26_2_a6,
     author = {V. N. Senichkin},
     title = {On~the approximation of~functions of several complex variables on fat compact subsets of~$\mathbf C^n$ by polynomials},
     journal = {Sbornik. Mathematics},
     pages = {260--279},
     year = {1975},
     volume = {26},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_26_2_a6/}
}
TY  - JOUR
AU  - V. N. Senichkin
TI  - On the approximation of functions of several complex variables on fat compact subsets of $\mathbf C^n$ by polynomials
JO  - Sbornik. Mathematics
PY  - 1975
SP  - 260
EP  - 279
VL  - 26
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1975_26_2_a6/
LA  - en
ID  - SM_1975_26_2_a6
ER  - 
%0 Journal Article
%A V. N. Senichkin
%T On the approximation of functions of several complex variables on fat compact subsets of $\mathbf C^n$ by polynomials
%J Sbornik. Mathematics
%D 1975
%P 260-279
%V 26
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1975_26_2_a6/
%G en
%F SM_1975_26_2_a6
V. N. Senichkin. On the approximation of functions of several complex variables on fat compact subsets of $\mathbf C^n$ by polynomials. Sbornik. Mathematics, Tome 26 (1975) no. 2, pp. 260-279. http://geodesic.mathdoc.fr/item/SM_1975_26_2_a6/

[1] E. Kallin, “Fat polynomially convex sets”, Function algebras, Proc. Internat. Simpos. on Function Algebras (Tulane Univ., 1965), Scott-Foresman, Chicago, 1966, 149–152 | MR

[2] Function algebras, Proc. Internat. Simpos. on Function Algebras (Tulane Univ., 1965), Scott-Foresman, Chicago, 1966

[3] S. N. Mergelyan, “Ravnomernoe priblizhenie funktsii kompleksnogo peremennogo”, Uspekhi matem. nauk, VII:2(48) (1952), 31–122 | MR

[4] M. V. Keldysh, “O predstavlenii funktsii kompleksnogo peremennogo ryadami polinomov v zamknutykh oblastyakh”, Matem. sb., 16(58) (1945), 249–258 | Zbl

[5] G. M. Khenkin, “Integralnoe predstavlenie funktsii, golomorfnykh v strogo psevdovypuklykh oblastyakh, i nekotorye prilozheniya”, Matem. sb., 78(120) (1969), 611–632 | Zbl

[6] A. I. Petrosyan, “Ravnomernoe priblizhenie funktsii polinomami na poliedrakh Veilya”, Izv. AN SSSR, seriya matem., 34 (1970), 1241–1261 | Zbl

[7] V. N. Senichkin, “Primer tolstogo polinomialno vypuklogo kompaktnogo podmnozhestva prostranstva $\mathbf{C}^2$ so svyaznoi vnutrennostyu, na kotorom ne vsyakuyu nepreryvnuyu funktsiyu, analiticheskuyu vo vnutrennikh tochkakh, mozhno ravnomerno priblizit mnogochlenami”, Zapiski nauchnykh seminarov LOMI, 22 (1971), 199–201 | Zbl

[8] V. N. Senichkin, “Algebra nepreryvnykh na sfere analiticheskikh funktsii s sovershennym mnozhestvom osobennostei, polinomialnaya approksimatsiya na tolstykh kompaktakh v $\mathbf{C}^n$”, Zapiski nauchnykh seminarov LOMI, 30 (1972), 172–173 | Zbl

[9] T. Gamelin, Ravnomernye algebry, izd-vo «Mir», Moskva, 1973

[10] I. I. Privalov, Granichnye svoistva analiticheskikh funktsii, Gostekhizdat, Moskva, 1950

[11] E. Bishop, “A minimal boundary for function algebras”, Pacific. J. Math., 9:3 (1959), 629–642 | MR | Zbl

[12] H. Rossi, “The local maximum modulus principle”, Ann. Math., 72:1 (1960), 1–11 | DOI | MR | Zbl

[13] A. A. Gonchar, “O minimalnoi granitse algebry $A(E)$”, Izv. AN SSSR, seriya matem., 27 (1963), 949–955 | Zbl

[14] A. M. Davie, “An example on rational approximation”, Bull. London Math. Soc., 2:1 (1970), 83–86 | DOI | MR | Zbl

[15] W. F. Osgood, “A Jordan curve of pasitive area”, Trans. Amer. Math. Soc., 4 (1903), 107–112 | DOI | MR | Zbl