Some properties of a~generalized solution of the second boundary-value problem for a~parabolic equation
Sbornik. Mathematics, Tome 26 (1975) no. 2, pp. 225-244

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish some properties (bounds in $L_p(\Omega)$ for $p\geqslant1$, absolute continuity of the entropy, etc.) for a solution in a cylindrical domain $\Omega\times\{t>0\}$, where $\Omega$ is an arbitrary, unbounded in general, domain of $R_n$, of the second boundary-value problem for a linear uniformly-parabolic equation of second order: \begin{gather*} \frac{\partial u}{\partial t}=\sum_{i,j=1}^n\frac\partial{\partial x_i}\biggl(a_{ij}(t,x)\frac{\partial u(t,x)}{\partial x_j}\biggr), \\ \frac{\partial u}{\partial N}\bigg|_{x\in\partial\Omega}=0,\qquad u\big|_{t=0}=\varphi(x),\quad\varphi(x)\in L_2(\Omega). \end{gather*} Bibliography: 2 titles.
@article{SM_1975_26_2_a4,
     author = {A. K. Gushchin},
     title = {Some properties of a~generalized solution of the second boundary-value problem for a~parabolic equation},
     journal = {Sbornik. Mathematics},
     pages = {225--244},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_26_2_a4/}
}
TY  - JOUR
AU  - A. K. Gushchin
TI  - Some properties of a~generalized solution of the second boundary-value problem for a~parabolic equation
JO  - Sbornik. Mathematics
PY  - 1975
SP  - 225
EP  - 244
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1975_26_2_a4/
LA  - en
ID  - SM_1975_26_2_a4
ER  - 
%0 Journal Article
%A A. K. Gushchin
%T Some properties of a~generalized solution of the second boundary-value problem for a~parabolic equation
%J Sbornik. Mathematics
%D 1975
%P 225-244
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1975_26_2_a4/
%G en
%F SM_1975_26_2_a4
A. K. Gushchin. Some properties of a~generalized solution of the second boundary-value problem for a~parabolic equation. Sbornik. Mathematics, Tome 26 (1975) no. 2, pp. 225-244. http://geodesic.mathdoc.fr/item/SM_1975_26_2_a4/