Some properties of a~generalized solution of the second boundary-value problem for a~parabolic equation
Sbornik. Mathematics, Tome 26 (1975) no. 2, pp. 225-244
Voir la notice de l'article provenant de la source Math-Net.Ru
We establish some properties (bounds in $L_p(\Omega)$ for $p\geqslant1$, absolute continuity of the entropy, etc.) for a solution in a cylindrical domain $\Omega\times\{t>0\}$, where $\Omega$ is an arbitrary, unbounded in general, domain of $R_n$, of the second boundary-value problem for a linear uniformly-parabolic equation of second order:
\begin{gather*}
\frac{\partial u}{\partial t}=\sum_{i,j=1}^n\frac\partial{\partial x_i}\biggl(a_{ij}(t,x)\frac{\partial u(t,x)}{\partial x_j}\biggr),
\\
\frac{\partial u}{\partial N}\bigg|_{x\in\partial\Omega}=0,\qquad u\big|_{t=0}=\varphi(x),\quad\varphi(x)\in L_2(\Omega).
\end{gather*} Bibliography: 2 titles.
@article{SM_1975_26_2_a4,
author = {A. K. Gushchin},
title = {Some properties of a~generalized solution of the second boundary-value problem for a~parabolic equation},
journal = {Sbornik. Mathematics},
pages = {225--244},
publisher = {mathdoc},
volume = {26},
number = {2},
year = {1975},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1975_26_2_a4/}
}
TY - JOUR AU - A. K. Gushchin TI - Some properties of a~generalized solution of the second boundary-value problem for a~parabolic equation JO - Sbornik. Mathematics PY - 1975 SP - 225 EP - 244 VL - 26 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1975_26_2_a4/ LA - en ID - SM_1975_26_2_a4 ER -
A. K. Gushchin. Some properties of a~generalized solution of the second boundary-value problem for a~parabolic equation. Sbornik. Mathematics, Tome 26 (1975) no. 2, pp. 225-244. http://geodesic.mathdoc.fr/item/SM_1975_26_2_a4/