Embedding theorems and best approximations
Sbornik. Mathematics, Tome 26 (1975) no. 2, pp. 213-224
Voir la notice de l'article provenant de la source Math-Net.Ru
We establish necessary and sufficient conditions, in terms of best approximations, for a function in $L^p(0,2\pi)$ ($0$) to belong to $L^q(0,2\pi)$ ($q$). The proofs depend on the properties of equimeasurable functions, which were applied by Ul'yanov in the theory of the embedding of certain classes $H_p^\omega$ for $p\geqslant1$ (RZhMat., 1969, 2B109). We also obtain some relationships among moduli of continuity in different metrics, which let us generalize results of Hardy and Littlewood (Math. Z., 28, № 4 (1928), 612–634) to the case $0$ and prove converses for nonincreasing functions.
Bibliography: 11 titles.
@article{SM_1975_26_2_a3,
author = {\`E. A. Storozhenko},
title = {Embedding theorems and best approximations},
journal = {Sbornik. Mathematics},
pages = {213--224},
publisher = {mathdoc},
volume = {26},
number = {2},
year = {1975},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1975_26_2_a3/}
}
È. A. Storozhenko. Embedding theorems and best approximations. Sbornik. Mathematics, Tome 26 (1975) no. 2, pp. 213-224. http://geodesic.mathdoc.fr/item/SM_1975_26_2_a3/