Embedding theorems and best approximations
Sbornik. Mathematics, Tome 26 (1975) no. 2, pp. 213-224

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish necessary and sufficient conditions, in terms of best approximations, for a function in $L^p(0,2\pi)$ ($0$) to belong to $L^q(0,2\pi)$ ($q$). The proofs depend on the properties of equimeasurable functions, which were applied by Ul'yanov in the theory of the embedding of certain classes $H_p^\omega$ for $p\geqslant1$ (RZhMat., 1969, 2B109). We also obtain some relationships among moduli of continuity in different metrics, which let us generalize results of Hardy and Littlewood (Math. Z., 28, № 4 (1928), 612–634) to the case $0$ and prove converses for nonincreasing functions. Bibliography: 11 titles.
@article{SM_1975_26_2_a3,
     author = {\`E. A. Storozhenko},
     title = {Embedding theorems and best approximations},
     journal = {Sbornik. Mathematics},
     pages = {213--224},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_26_2_a3/}
}
TY  - JOUR
AU  - È. A. Storozhenko
TI  - Embedding theorems and best approximations
JO  - Sbornik. Mathematics
PY  - 1975
SP  - 213
EP  - 224
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1975_26_2_a3/
LA  - en
ID  - SM_1975_26_2_a3
ER  - 
%0 Journal Article
%A È. A. Storozhenko
%T Embedding theorems and best approximations
%J Sbornik. Mathematics
%D 1975
%P 213-224
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1975_26_2_a3/
%G en
%F SM_1975_26_2_a3
È. A. Storozhenko. Embedding theorems and best approximations. Sbornik. Mathematics, Tome 26 (1975) no. 2, pp. 213-224. http://geodesic.mathdoc.fr/item/SM_1975_26_2_a3/