On a dual problem. I. General results. Applications to Frèchet spaces
Sbornik. Mathematics, Tome 26 (1975) no. 2, pp. 181-212 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $H$ be a separated locally convex space; $x_k\in H$, $x_k\ne0$, $k=1,2,\dots$ . The author shows that if $H$ is a Frèchet space or an $LN^*$-space, then the system $\{x_k\}$ is a basis (topological or absolute) in the closure of its linear span if and only if the system of equations $\varphi(x_k)=d_k$, $k=1,2,\dots$, has a solution $\varphi$ in $H'$ for any sequence $\{d_k\}$ from a certain space $E_1$ (respectively, from $E_2$ for an absolute basis). Bibliography: 32 titles.
@article{SM_1975_26_2_a2,
     author = {Yu. F. Korobeinik},
     title = {On~a~dual problem. {I.~General} results. {Applications} to {Fr\`echet} spaces},
     journal = {Sbornik. Mathematics},
     pages = {181--212},
     year = {1975},
     volume = {26},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_26_2_a2/}
}
TY  - JOUR
AU  - Yu. F. Korobeinik
TI  - On a dual problem. I. General results. Applications to Frèchet spaces
JO  - Sbornik. Mathematics
PY  - 1975
SP  - 181
EP  - 212
VL  - 26
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1975_26_2_a2/
LA  - en
ID  - SM_1975_26_2_a2
ER  - 
%0 Journal Article
%A Yu. F. Korobeinik
%T On a dual problem. I. General results. Applications to Frèchet spaces
%J Sbornik. Mathematics
%D 1975
%P 181-212
%V 26
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1975_26_2_a2/
%G en
%F SM_1975_26_2_a2
Yu. F. Korobeinik. On a dual problem. I. General results. Applications to Frèchet spaces. Sbornik. Mathematics, Tome 26 (1975) no. 2, pp. 181-212. http://geodesic.mathdoc.fr/item/SM_1975_26_2_a2/

[1] Pich, Yadernye lokalno vypuklye prostranstva, izd-vo «Mir», Moskva, 1967 | MR

[2] R. Edvards, Funktsionalnyi analiz, izd-vo «Mir», Moskva, 1969

[3] W. Newns, “On the representation of analytical functions by infinite series”, Phil. Trans. Roy. Soc. London (A), 245 (1953), 429–468 | DOI | MR | Zbl

[4] M. Arsove, R. Edwards, “Generalized bases in topological linear spaces”, Studia Math., 19 (1960), 95–113 | MR | Zbl

[5] A. Robertson, V. Robertson, Topologicheskie vektornye prostranstva, izd-vo «Mir», Moskva, 1967 | MR

[6] Zh. Dedonne, L. Shvarts, “Dvoistvennost v prostranstvakh $F$ i $LF$”, Matematika, 2:2 (1958), 77–117

[7] M. M. Grinblyum, “Ob odnom priznake bazisa”, DAN SSSR, 59:1 (1948), 9–11 | MR

[8] M. M. Dragilev, V. P. Zakharyuta, Yu. F. Korobeinik, “Dvoistvennaya svyaz mezhdu nekotorymi voprosami teorii bazisa i interpolyatsii”, DAN SSSR, 215:3 (1974), 522–525 | MR | Zbl

[9] D. A. Raikov, “O dvukh klassakh lokalno vypuklykh prostranstv, vazhnykh v prilozheniyakh”, Trudy seminara po funkts. analizu, 5, Voronezh, 1957, 22–34 | MR

[10] L. V. Kantorovich, G. P. Akilov, Funktsionalnyi analiz v normirovannykh prostranstvakh, Fizmatgiz, Moskva, 1959 | MR

[11] Kh. Shefer, Topologicheskie vektornye prostranstva, izd-vo «Mir», Moskva, 1971 | MR

[12] M. A. Evgrafov, Interpolyatsionnaya zadacha Abelya-Goncharova, Gostekhizdat, Moskva, 1954

[13] S. Rolewicz, Metric Linear Spaces, PWN, Warszawa, 1972 | MR | Zbl

[14] V. P. Khavin, “Prostranstva analiticheskikh funktsii”, Itogi nauki. Sb. «Matem. analiz 1964», VINITI, Moskva, 1966, 76–164 | MR

[15] A. O. Gelfond, A. F. Leontev, “Ob odnom obobschenii ryada Fure”, Matem. sb., 29(71) (1951), 477–500 | MR

[16] G. Polia, G. Sege, Zadachi i teoremy iz analiza, ch. II, ONTI, Moskva–Leningrad, 1938

[17] A. F. Leontev, “K voprosu ob interpolirovanii v klasse tselykh funktsii konechnogo poryadka”, Matem. sb., 41(53) (1957), 81–96 | MR

[18] O. S. Firsakova, “Nekotorye voprosy interpolirovaniya s pomoschyu tselykh funktsii”, DAN SSSR, 120:3 (1958), 477–480 | MR | Zbl

[19] G. P. Lapin, “O tselykh funktsiyakh konechnogo poryadka, prinimayuschikh vmeste s proizvodnymi zadannye konechnye znacheniya v zadannykh konechnykh tochkakh”, Sib. matem. zh., 6:6 (1965), 1267–1281 | MR | Zbl

[20] Yu. F. Korobeinik, O. V. Epifanov, “Otsenki proizvodnykh v vesovykh prostranstvakh tselykh funktsii”, Izv. AN Arm.SSR, VIII:2 (1973), 144–156 | MR

[21] B. Ya. Levin, Raspredelenie kornei tselykh funktsii, Gostekhizdat, Moskva, 1956

[22] A. F. Leontev, Ryady polinomov Dirikhle i ikh obobscheniya, Trudy Matem. in-ta im. V. A. Steklova, XXXIX, 1951 | MR | Zbl

[23] V. L. Goncharov, Teoriya interpolirovaniya i priblizheniya funktsii, Gostekhizdat, Moskva, 1954

[24] A. O. Gelfond, Ischislenie konechnykh raznostei, Gostekhizdat, Moskva, 1952

[25] I. I. Ibragimov, Metody interpolyatsii funktsii i nekotorye ikh primeneniya, izd-vo «Nauka», Moskva, 1973 | MR

[26] Yu. A. Kazmin, “Ob odnoi zadache Gelfonda-Ibragimova, II”, Vestnik MGU, seriya matem., 1965, no. 6, 37–44 | MR

[27] Yu. A. Kazmin, “Izv. AN SSSR, seriya matem.”, K voprosu o vosstanovlenii analiticheskoi funktsii po ee elementam, 30 (1966), 307–324 | MR

[28] Yu. A. Kazmin, Metody interpolyatsii analiticheskikh funktsii i ikh prilozheniya, avtoreferat dokt. dissertatsii, izd-vo MGU, Moskva, 1972

[29] M. M. Dragilev, “K voprosu o skhodimosti interpolyatsionnogo ryada Abelya-Goncharova”, Uspekhi matem. nauk, XV:3(98) (1960), 151–155 | MR

[30] Yu. F. Korobeinik, “Ob uravneniyakh beskonechnogo poryadka v obobschennykh proizvodnykh”, Sib. matem. zh., 5:6 (1954), 1259–1281 | MR

[31] M. G. Khaplanov, “O polnote nekotorykh sistem analiticheskikh funktsii”, Uchenye zapiski Rostovsk. gos. ped. in-ta, no. 3, 1955, 53–58

[32] J. L. Frank, J. K. Shaw, “Abel-Goncarov polynomial expansions”, J. Approxim. Theory, 10:1 (1974), 6–22 | DOI | MR | Zbl