On~a~dual problem. I.~General results. Applications to Fr\`echet spaces
Sbornik. Mathematics, Tome 26 (1975) no. 2, pp. 181-212

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $H$ be a separated locally convex space; $x_k\in H$, $x_k\ne0$, $k=1,2,\dots$ . The author shows that if $H$ is a Frèchet space or an $LN^*$-space, then the system $\{x_k\}$ is a basis (topological or absolute) in the closure of its linear span if and only if the system of equations $\varphi(x_k)=d_k$, $k=1,2,\dots$, has a solution $\varphi$ in $H'$ for any sequence $\{d_k\}$ from a certain space $E_1$ (respectively, from $E_2$ for an absolute basis). Bibliography: 32 titles.
@article{SM_1975_26_2_a2,
     author = {Yu. F. Korobeinik},
     title = {On~a~dual problem. {I.~General} results. {Applications} to {Fr\`echet} spaces},
     journal = {Sbornik. Mathematics},
     pages = {181--212},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_26_2_a2/}
}
TY  - JOUR
AU  - Yu. F. Korobeinik
TI  - On~a~dual problem. I.~General results. Applications to Fr\`echet spaces
JO  - Sbornik. Mathematics
PY  - 1975
SP  - 181
EP  - 212
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1975_26_2_a2/
LA  - en
ID  - SM_1975_26_2_a2
ER  - 
%0 Journal Article
%A Yu. F. Korobeinik
%T On~a~dual problem. I.~General results. Applications to Fr\`echet spaces
%J Sbornik. Mathematics
%D 1975
%P 181-212
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1975_26_2_a2/
%G en
%F SM_1975_26_2_a2
Yu. F. Korobeinik. On~a~dual problem. I.~General results. Applications to Fr\`echet spaces. Sbornik. Mathematics, Tome 26 (1975) no. 2, pp. 181-212. http://geodesic.mathdoc.fr/item/SM_1975_26_2_a2/