On~an application of~the multiple logarithmic residue to the expansion of implicit functions in power series
Sbornik. Mathematics, Tome 26 (1975) no. 2, pp. 165-179
Voir la notice de l'article provenant de la source Math-Net.Ru
By means of a multidimensional analog of the theorem of logarithmic residues, representations are found for the implicit functions $z_j=\varphi_j(w)$, $j=1,\dots,n$, defined by the system of equations
$$
F_j(w,z)=0,\qquad j=1,\dots,n,
$$
where $w=(w_1,\dots,w_m)$, $z=(z_1,\dots,z_n)$, $F_j(0,0)=0$, and $\frac{\partial(F_1,\dots,F_n)}{\partial(z_1,\dots,z_n)}\big|_{(0,0)}\ne0,$
as also for the function $\Phi(w,z)=\Phi(w,\varphi(w))$, $\varphi=(\varphi_1,\dots,\varphi_n)$, where $F_1,\dots,F_n$ and $\Phi$ are holomorphic functions at $(0,0)\in\mathbf C_{(w,z)}^{m+n}$, in the form of power series and certain function series. In particular, a formula is obtained for the inverse of a holomorphic map in $\mathbf C^n$. One degenerate case is considered, where it is still possible to define single-valued branches of the implicit functions.
Bibliography: 16 titles.
@article{SM_1975_26_2_a1,
author = {A. P. Yuzhakov},
title = {On~an application of~the multiple logarithmic residue to the expansion of implicit functions in power series},
journal = {Sbornik. Mathematics},
pages = {165--179},
publisher = {mathdoc},
volume = {26},
number = {2},
year = {1975},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1975_26_2_a1/}
}
TY - JOUR AU - A. P. Yuzhakov TI - On~an application of~the multiple logarithmic residue to the expansion of implicit functions in power series JO - Sbornik. Mathematics PY - 1975 SP - 165 EP - 179 VL - 26 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1975_26_2_a1/ LA - en ID - SM_1975_26_2_a1 ER -
A. P. Yuzhakov. On~an application of~the multiple logarithmic residue to the expansion of implicit functions in power series. Sbornik. Mathematics, Tome 26 (1975) no. 2, pp. 165-179. http://geodesic.mathdoc.fr/item/SM_1975_26_2_a1/